Home Subscription Services
 
   

 
The International Journal of Prosthodontics
IJP Home Page
About the Editor
Editorial Board
Accepted Manuscripts
Submit
Author Guidelines
Submission Form
Reprints / Articles
Permissions
Advertising
MEDLINE Search
 
 
 
 
 
FacebookTwitter
Quintessence Publishing: Journals: IJP
The International Journal of Prosthodontics

Edited by George A. Zarb, BChD, DDS, MS, MS, FRCD(C)

ISSN 0893-2174

Publication:
March/April 2011
Volume 24 , Issue 2

Back
Share Abstract:

Loading of a Single Implant in Simulated Bone

Pimduen Rungsiyakull, DDS, MDSc(Pros)/Chaiy Rungsiyakull, BEng, MEng/Richard Appleyard, BE, PhD/Qing Li, BE, ME, ME(Res), PhD/Micheal Swain, BSc, PhD/Iven Klineberg, BSc, MDSc, PhD, FRACDS, FDSRCS

Pages: 140143
PMID: 21479281

This study investigated the effect of occlusal design on the strain developed in simulated bone of implant-supported single crown models. Triaxial strain gauges were attached at the cervical area of each model. Occlusal design, load location, and magnitude were examined to determine the maximum axial principal strains (ε) of four occlusal designs: 30-degree cusp inclination with 4- and 6-mm occlusal table dimensions and a 10-degree cusp inclination with 4- and 6-mm occlusal table dimensions. Statistical differences were found for peak average maximum principal strains between each occlusal design when the applied load was directed along the central fossa and 2 mm buccal to the central fossa along the inclined plane, with strain gauges attached at the cervicobuccal (P < .001) and cervicolingual (P ≤ .001) aspects. In all loading conditions, the 30-degree cusp inclination and 6-mm occlusal table dimension consistently presented the largest strains compared with the other occlusal designs. A reduced cusp inclination and occlusal table dimension effectively reduced experimental bone strain on implant-supported single crowns. The occlusal table dimension appeared to have a relatively more important role than cusp inclination. Int J Prosthodont 2011;24:140143.

Full Text PDF File | Order Article

 

 
Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.
  © 2014 Quintessence Publishing Co Inc
 

Home | Subscription Services | Books | Journals | Multimedia | Events | Blog
Terms of Use | Privacy Policy | About Us | Contact Us | Advertising | Help | Sitemap | Catalog