LOGIN
 
Share Page:
Back

Volume 23 , Issue 5
September/October 2010

Pages 434–442


Monolithic CAD/CAM Lithium Disilicate Versus Veneered Y-TZP Crowns: Comparison of Failure Modes and Reliability After Fatigue

Petra C. Guess, DDS/Ricardo A. Zavanelli, DDS/Nelson R.F.A. Silva, DDS, MSc, PhD/Estevam A. Bonfante, DDS/ Paulo G. Coelho, DDS, PhD/Van P. Thompson, DDS, PhD


PMID: 20859559

Purpose: The aim of this research was to evaluate the fatigue behavior and reliability of monolithic computer-aided design/computer-assisted manufacture (CAD/CAM) lithium disilicate and hand-layer–veneered zirconia all-ceramic crowns. Materials and Methods: A CAD-based mandibular molar crown preparation, fabricated using rapid prototyping, served as the master die. Fully anatomically shaped monolithic lithium disilicate crowns (IPS e.max CAD, n = 19) and hand-layer–veneered zirconia-based crowns (IPS e.max ZirCAD/Ceram, n = 21) were designed and milled using a CAD/CAM system. Crowns were cemented on aged dentinlike composite dies with resin cement. Crowns were exposed to mouth-motion fatigue by sliding a WC-indenter (r = 3.18 mm) 0.7 mm lingually down the distobuccal cusp using three different step-stress profiles until failure occurred. Failure was designated as a large chip or fracture through the crown. If no failures occurred at high loads (> 900 N), the test method was changed to staircase r ratio fatigue. Stress level probability curves and reliability were calculated. Results: Hand-layer–veneered zirconia crowns revealed veneer chipping and had a reliability of < 0.01 (0.03 to 0.00, two-sided 90% confidence bounds) for a mission of 100,000 cycles and a 200-N load. None of the fully anatomically shaped CAD/CAM-fabricated monolithic lithium disilicate crowns failed during step-stress mouth-motion fatigue (180,000 cycles, 900 N). CAD/CAM lithium disilicate crowns also survived r ratio fatigue (1,000,000 cycles, 100 to 1,000 N). There appears to be a threshold for damage/bulk fracture for the lithium disilicate ceramic in the range of 1,100 to 1,200 N. Conclusion: Based on present fatigue findings, the application of CAD/CAM lithium disilicate ceramic in a monolithic/fully anatomical configuration resulted in fatigue-resistant crowns, whereas hand-layer–veneered zirconia crowns revealed a high susceptibility to mouth-motion cyclic loading with early veneer failures. Int J Prosthodont 2010;23:434–442.


Full Text PDF File | Order Article

 

 
Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.

 

© 2017 Quintessence Publishing Co, Inc

IJP Home
Current Issue
Ahead of Print
Archive
Author Guidelines
About
Accepted Manuscripts
Submission Form
Submit
Reprints
Permission
Advertising
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us
Help