Share Page:

Volume 10 , Issue 2
March/April 1997

Pages 142-148

Impact Strength of a Modified Continuous Glass Fiber--Poly(methyl Methacrylate)


PMID: 9206454

The effect of fiber reinforcement of autopolymerizing poly(met hyl methacrylate) was investigated. The impact strength of continuous E-glass fiber-poly(methyl methacrylate) composite was determined. Rectangular test specimens (n = 10 per group) were modified by incorporating an additional fiber reinforcement of untreated E-glass fibers, silanized E-glass fibers, or aramid fibers in the test specimens. Controls were either unreinforced or reinforced from the middle of the test specimen only. The impact strength of the specimens was measured by using a charpy-type pendulum impact tester after the specimens had been stored in water at 37 degrees C for 4 weeks. After the impact strength test, the length of the delamination of poly(methyl methacrylate) from the fibers was measured and plotted to the impact strength of the test specimens by using a linear regression model. The impact strength of unreinforced autopolymerizing poly(methyl methacrylate) was 7.8 kJ/m to the second power, while incorporation of glass fiber reinforcement with a fiber concentration of 12.4 wt% increased the impact strength to 74.7 kJ/m to the second power (P = .000). The additional fiber reinforcement of the test specimen did not affect the impact strength (P = .363). Delamination negatively correlated with the impact strength of the test specimens (r = -.72, P = .000). The results of this study suggest that glass fiber reinforcement enhanced the impact strength of autopolymerizing poly(methyl methacrylate), while the use of additional fiber reinforcement made of aramid or glass fibers in the test specimens did not have an effect on the impact strength.

Full Text PDF File | Order Article


Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.


© 2017 Quintessence Publishing Co, Inc

IJP Home
Current Issue
Ahead of Print
Author Guidelines
Accepted Manuscripts
Submission Form
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us