LOGIN
 
Share Page:
Back

Volume 13 , Issue 4
July/August 2000

Pages 334-339


Effect of 180-Week Water Storage on the Flexural Properties of E-Glass and Silica Fiber Acrylic Resin Composite

Pekka K. Vallittu, DDS, PhD, CDT


PMID: 11203651

Purpose: The aim of this study was to determine the effect of long-term water immersion on the flexural properties of fiber-reinforced composite. Materials and Methods: Continuous, woven, silanized E-glass fibers and woven silica fibers were used to reinforce heat-cured and autopolymerized denture base polymers. Fibers were oriented at a 45-degree angle to the long axis of the test specimens. Control specimens were unreinforced. Dry test specimens and those stored in water for up to 180 weeks were tested with a 3-point loading apparatus. Results: Ultimate transverse strength and flexural modulus of unreinforced and fiber-reinforced composite test specimens decreased during water storage (P < 0.001, analysis of variance). Post hoc analysis revealed that after the storage of 4 weeks no statistically significant reduction occurred. Conclusion: The results of this study suggest that the ultimate transverse strength of the fiber-reinforced composite made from E-glass fibers is reduced by approximately 27% compared to the dry fiber-reinforced composite. The majority of the reduction occurred during 4 weeks of storage in water and remained approximately at that level for 180 weeks.


Full Text PDF File | Order Article

 

 
Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.

 

© 2017 Quintessence Publishing Co, Inc

IJP Home
Current Issue
Ahead of Print
Archive
Author Guidelines
About
Accepted Manuscripts
Submission Form
Submit
Reprints
Permission
Advertising
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us
Help