LOGIN
 
Share Page:
Back

Volume 13 , Issue 1
January/February 2000

Pages 47-51


In Vitro Tensile Bond Strength of Adhesive Cements to New Post Materials

Kathy L. O’Keefe, DDS/Barbara H. Miller, DDS, MS/John M. Powers, PhD


PMID: 11203608

Purpose: The purpose of this study was to measure the in vitro tensile bond strength of 3 types of adhesive resin cements to stainless steel, titanium, carbon fiber-reinforced resin, and zirconium oxide post materials. Materials and Methods: Disks of post materials were polished to 600 grit, air abraded, and ultrasonically cleaned. Zirconium oxide bonding surfaces were pretreated with hydrofluoric acid and silanated. Bis-Core, C&B Metabond, and Panavia cements were bonded to the post specimens and placed in a humidor for 24 hours. Post specimens were debonded in tension. Means and standard deviations (n = 5) were analyzed by 2-way analysis of variance. Tukey-Kramer intervals at the 0.05 significance level were calculated. Failure modes were observed. Results: Panavia 21 provided the highest bond strengths for all types of post materials, ranging from 22 MPa (zirconium oxide) to 37 MPa (titanium). C&B Metabond bonded significantly more strongly to stainless steel (27 MPa) and titanium (22 MPa) than to zirconium oxide (7 MPa). Bis-Core results were the lowest, ranging from 16 MPa (stainless steel) to 8 MPa (zirconium oxide). In most cases, bonds to carbon fiber post materials were weaker than to stainless steel and titanium, but stronger than to zirconium oxide. In general, higher bond strengths resulted in a higher percentage of cohesive failures within the cement. Conclusion: Panavia 21 provided the highest bond strengths to all post materials, followed by C&B Metabond. In most cases, adhesive resins had higher bond strengths to stainless steel, titanium, and carbon fiber than to zirconium oxide.


Full Text PDF File | Order Article

 

 
Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.

 

© 2017 Quintessence Publishing Co, Inc

IJP Home
Current Issue
Ahead of Print
Archive
Author Guidelines
About
Accepted Manuscripts
Submission Form
Submit
Reprints
Permission
Advertising
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us
Help