Share Page:

Volume 19 , Issue 5
September/October 2006

Pages 442448

Damage Accumulation and Fatigue Life of Particle-Abraded Ceramics

Yu Zhang, PhD / Brian R. Lawn, PhD / Kenneth A. Malament, DDS, MScD / Van P. Thompson, DDS, PhD / E. Dianne Rekow, DDS, PhD

PMID: 17323721

Purpose: This investigation compared initial and fatigue strengths of particle-abraded ceramics to those of as-polished alumina and zirconia ceramics in crown-like layer structures. Materials and Methods: Alumina or zirconia plates bonded to polycarbonate substrates were subjected to single-cycle and multi-cycle contact (fatigue) loading. Cementation surfaces of the ceramic were damaged by controlled particle abrasion, indentation with a sharp diamond at low load, or a blunt indenter at high load. The stresses needed to initiate radial fractures were evaluated. Results: The strengths of specimens were lowered by fatigue loading. After the equivalent of 1 year of occlusal contacts, the strengths of undamaged specimens degraded to approximately half of their single-cycle values. In particle-abraded specimens, an additional 20% to 30% drop in strength occurred after several hundred load cycles. Particle abrasion damage was approximately equivalent to damage from sharp indentation at low load or blunt indentation at high load. Conclusion: Damage from particle abrasion, not necessarily immediately apparent, compromised the fatigue strength of zirconia and alumina ceramics in crown-like structures. In fatigue, small flaws introduced by particle abrasion can outweigh any countervailing strengthening effect from compression associated with surface damage or, in the case of zirconia, with phase transformation. Int J Prosthodont 2006;19:442448.

Full Text PDF File | Order Article


Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.


© 2017 Quintessence Publishing Co, Inc

IJP Home
Current Issue
Ahead of Print
Author Guidelines
Accepted Manuscripts
Submission Form
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us