Share Page:

Volume 18 , Issue 1
January/February 2005

Bond Strengths of Veneering Ceramics to Reinforced Ceramic Core Materials

Mine Dündar, DDS, PhD/M. Özcan, DDS, PhDb/E. Çömlekoglu, DDS/M. Ali Güngör, DDS, PhD/C. Artunç, DDS, PhD

PMID: 15754896

Reinforced core ceramics are commonly used to deliver more esthetic ceramic restorations with weaker, but more translucent, veneering ceramics.1 The aim of this study was to evaluate the shear bond strengths of four individual veneering ceramics—three feldspathic and one fluorapatite—to their corresponding core ceramics: leucite-reinforced ceramic (Evopress, Wegold); low-leucite-reinforced ceramic (Finesse, Ceramco); glass-infiltrated alumina (In-Ceram Alumina, Vita); and lithium disilicate (Empress 2, Ivoclar Vivadent), respectively.

Materials and Methods: Ceramic cores (n = 10/group, total = 40) were fabricated according to manufacturers’ instructions (thickness 3 mm, diameter 5 mm) and ultrasonically cleaned for 15 minutes in ethanol and deionized water. The veneering ceramics were condensed in a stainless-steel mold (diameter 5 mm, height 5 mm, core 3 mm, veneer 2 mm) and fired on the core materials. The samples were tried in the mold for minor adjustments, ultrasonically cleaned, and embedded in polymethyl methacrylate.2 All groups of core–veneering ceramic combinations were randomly divided into two groups (n = 5/group) for dry and thermocycled storing conditions. Dry samples were kept in a dessicator at room temperature for 24 hours prior to testing, and the other groups were subjected to thermocycling (5 cycles; 5 and 55ºC; 30-second dwell time).3 The shear bond strength tests were performed in a universal testing machine (cross-head speed 0.5 mm/min) (Fig 1). The bond strengths (mean, in MPa, ± standard deviation) and modes of failures were recorded. The means of each group were analyzed by one-way analysis of variance, and multiple comparisons were made by repeated measures test (a = .05) (SAS 8.02, SAS Institute).

Results: In dry conditions, the shear bond strength of veneering ceramic to core material in the Empress 2 system was significantly higher (41 ± 8 MPa; P , .05) than those of the Finesse (28 ± 4 MPa), In-Ceram Alumina (26 ± 4 MPa), and Evopress (23 ± 3 MPa) systems (Fig 2). Thermocycling significantly decreased the bond strengths in the Empress 2 system (31 ± 4 MPa) when compared with dry conditions, but the decrease was not significant in the Finesse, Evopress, and In-Ceram systems ( P > .05). Although the failure mode was mainly adhesive at the core-veneer interface for In-Ceram Alumina, predominantly cohesive fractures in the core materials were observed in the Empress 2, Finesse, and Evopress systems. Scanning electron microscopic images exhibited cohesive failures, with partially delaminated surfaces revealing no clear crack sites, and the adhesive failures, particularly in glass-infiltrated alumina/feldspathic ceramic, exhibited visible delamination sites at the core-veneer interface.

Conclusion: Bilayered ceramic specimens exhibited complex failure modes that could be attributed to differences in the flexural strengths between the two ceramics, as well as to the differences in their thermal expansion coefficients.1 Although the thickness of the core ceramic was standard for all groups, it was reported that small variations could affect the strength of the restoration.4 Fluorapatite veneering ceramic demonstrated higher bond strength to lithium disilicate ceramic than the leucite–glass ceramic/feldspathic ceramic or glass-infiltrated alumina/feldspathic core– veneer ceramic combinations did. After thermocycling, core–veneer bond strength was affected the most in lithium disilicate/fluorapatite combinations.

1. Ironside JG, Swain MV. Ceramics in dental restorations—A review and critical issues. J Aust Ceram Soc 1998;34:78-91.

2. Haselton DR, Diaz-Arnold AM, Dunne JT Jr. Shear bond strengths of 2 intraoral porcelain repair systems to porcelain or metal substrates. J Prosthet Dent 2001;86:526–531.

3. Özcan M, Niedermeier W. Clinical study on the reasons for and location of failures of metal-ceramic restorations and survival of repairs. Int J Prosthodont 2002;15:299–302.

4. Chai J, Takahashi Y, Sulaiman F, Chong K, Lautenschlager EP. Probability of fracture of all-ceramic crowns. Int J Prosthodont 2000;13:420–424.

Full Text PDF File | Order Article


Get Adobe Reader
Adobe Acrobat Reader is required to view PDF files. This is a free program available from the Adobe web site.
Follow the download directions on the Adobe web site to get your copy of Adobe Acrobat Reader.


© 2017 Quintessence Publishing Co, Inc

IJP Home
Current Issue
Ahead of Print
Author Guidelines
Accepted Manuscripts
Submission Form
Quintessence Home
Terms of Use
Privacy Policy
About Us
Contact Us