Home Subscription Services
 
   

 
The Journal of Adhesive Dentistry
EJED Home Page
About the Editor
Editorial Board
Submit
Author Guidelines
Submission Form
Reprints / Articles
Permissions
Advertising
MEDLINE Search
Official Site
 
 
 
 
 
FacebookTwitter
Quintessence Publishing: Journals: IJED

 

The International Journal of Esthetic Dentistry

Edited by Alessandro Devigus, DMD

Official journal of the European Academy of Esthetic Dentistry

ISSN 1862-0612

Publication:

Spring 2014
Volume 9 , Issue 1

Back
Share Abstract:

Comparison of fracture resistance and fracture characterization of bilayered zirconia/fluorapatite and monolithic lithium disilicate all ceramic crowns

Altamimi, Abdulaziz M. / Tripodakis, Aris Petros D. / Ellades, George / Hirayama, Hiroshi

Pages: 98-110

Purpose: To compare the fracture resistance between bilayered zirconia/ fluorapatite and monolithic lithium disilicate heat-pressed crowns and characterize the mode of fracture failure.
Materials and methods: Thirty crown samples were sequentially fitted on a mandibular right first molar metal replica of an ivory prepared molar tooth. The crown specimens were divided in three groups (A, B, and C; n = 10 for each group). Group A consisted of bilayered zirconia/fluorhapatite pressed-over crowns with standard design crown copings (0.7 mm uniform thickness), Group B of bilayered zirconia/fluorhapatite with anatomical design crown copings, and Group C of lithium disilicate monolithic crowns. The samples were then dynamically loaded under water for 100,000 cycles with a profile of 250 N maximum load at 1,000 N/s rate and 2.0 Hz frequency. Loading was performed with a steel ball (5 mm in diameter) coming into contact with the test crown, loading to maximum, holding for 0.2 s, unloading and lifting off 0.5 mm. The samples were then fractured under static loading, in order to determine the ultimate crown strength. Analysis of the recorded fracture load values was carried out with one-way analysis of variance (ANOVA) followed by Tukey tests. Fractured specimens were examined by stereomicroscopy and scanning electron microscopy.
Results: The fracture loads measured were (N, means and standard deviations): Group A: 561.87 (72.63), Group B: 1,014.16 (70.18) and Group C: 1,360.63 (77.95). All mean differences were statistically significant (P < 0.001). Catastrophic fractures occurred in Group C, whereas mainly veneer fractures were observed in Groups A and B.
Conclusion: In the present study, the heat-pressed monolithic lithium-disilicate crowns showed more fracture resistance than zirconia/fluorapatite pressed-over crowns. Within the bilayered groups, the anatomical zirconia coping design presented increased ceramic fracture resistance.

Full Text PDF File | Order Article

 

 
  © 2014 Quintessence Publishing Co Inc
 

Home | Subscription Services | Books | Journals | Multimedia | Events | Blog
Terms of Use | Privacy Policy | About Us | Contact Us | Advertising | Help | Sitemap | Catalog