The Single-Tooth Implant

A Minimally Invasive Approach for Anterior and Posterior Extraction Sockets

Dennis P. Tarnow, DDS
Clinical Professor and Director of Implant Education
Department of Periodontology
Columbia University College of Dental Medicine
Private Practice
New York, New York

Stephen J. Chu, DMD, MSD, CDT
Adjunct Clinical Professor
Ashman Department of Periodontology & Implant Dentistry
Department of Prosthodontics
New York University College of Dentistry
Private Practice
New York, New York

QUINTESSENCE PUBLISHING
Berlin, Barcelona, Chicago, Istanbul, London, Mexico City, Milan,
Moscow, Paris, Prague, São Paulo, Seoul, Tokyo, Warsaw
Contents

Foreword viii
Preface ix

CHAPTER 1 History and Rationale for Anterior and Posterior Single-Tooth Implants 1
 Immediate Versus Delayed Tooth Replacement Therapy
 Clinical Example
 Challenges with Immediate Implant Placement
 Classification of Extraction Sockets
 Diagnostic Aids for Socket Management: Radiographic and Clinical Examination
 CBCT
 Probes

CHAPTER 2 Management of Type 1 Extraction Sockets 19
 Flapped Versus Flapless Tooth Extraction: Evidence-Based Rationale
 Blood supply to the labial plate
 Labial contour and ridge dimensional change
 Tooth Extraction Techniques with Specific Instrumentation
 Single-rooted anterior teeth
 Multirooted posterior teeth
 3D Spatial Implant Placement Within the Anterior Extraction Socket
 The influence of implant position on restorative emergence profile
 Implant placement
 Implant angulation
 Implant depth
 Horizontal Soft Tissue Thickness
 Connective tissue grafts around implants and edentulous ridges
 Periodontal phenotype
 Gap Distance and Wound Healing
 Primary flap closure versus secondary-intention wound healing
 Case example and histologic evidence
 Hard tissue grafting of the gap
Bone Thickness and Ridge Dimensional Change
Peri-implant Soft Tissue Thickness
 Tissue discoloration around implants
 Layperson’s perception threshold of faciopalatal ridge collapse
Dual-Zone Socket Management
 Bone graft materials
 Bone graft material for dual-zone therapy
 Prosthetic socket sealing
 iShell technique
Sulcular Bleeding at First Disconnection of an Implant Healing Abutment
Cement- Versus Screw-Retained Provisional and Definitive Restorations
Abutment Selection: Materials and Color Considerations
Management of Teeth with Periapical Lesions, Fistulae, and Ankylosis
 Periapical lesions and fistulae
 Ankylosed teeth
Implant Design for Immediate Placement
 Tapered vs cylindrical implants, thread design, and thread pitch
 Platform switching
 One abutment, one time
 Coaxial versus straight implants
 Inverted body-shift design implant
 Wide-body versus regular-width implants

CHAPTER 3 Management of Type 2 Extraction Sockets 77
Implants Placed Immediately into Type 2 Extraction Sockets
 Clinical example
Delayed Implant Placement
 Membranes for socket preservation
 Ice cream cone technique
 Delayed implant placement with immediate provisional restoration
Flap Design for Delayed Implant Placement After Ridge Healing
 Punch technique
 Flap technique
 Soft tissue sculpting with the provisional restoration

CHAPTER 4 Management of Type 3 Extraction Sockets 101
Treatment of 3 mm of Midfacial Recession
Treatment of 1 mm of Midfacial Recession with Absence of Labial Bone Plate
CHAPTER 5 Clinical Management of Posterior Teeth 117

Tooth Extraction for Multirooted Teeth
Implant Placement into Molar Extraction Sockets
 Type A
 Type B
 Type C

Alternative Immediate Molar Implant Placement Strategies
Clinical Example
Delayed Protocol for Molar Teeth

CHAPTER 6 Important Considerations in Implant Dentistry 131

Cementation Methods
Impression-Making Techniques
Complications
 Occlusal overloading
 Breakage or delamination of the provisional restoration from temporary cylinders

CHAPTER 7 Clinical Case Appendix 141

Type 1
 Case 1: Horizontal fracture of maxillary central incisor
 Case 2: Large internal resorption lesion
 Case 3: Internal resorption lesion at maxillary central incisor
 Case 4: Vertical crown fracture of maxillary central incisor
 Case 5: High smile line
 Case 6: High smile line and chronic fistula

Type 2
 Case 7: Loss of labial plate
 Case 8: Periapical lesion and tooth fracture with necrosis

Type 3
 Case 9: Loss of labial plate at maxillary central incisor

Molars
 Case 10: External resorption lesion of maxillary first molar
 Case 11: Vertical root fracture of mandibular first molar

Index 227
Education is the key to changing lives. It is fundamental to how practitioners treatment plan with the understanding of biology and eventually improve patient outcomes. Over the past three decades, I have had the opportunity and pleasure to work closely with Drs Dennis P. Tarnow and Stephen J. Chu in the arena of both domestic and international continuing dental education. Dennis and Steve are exceptional academic educators, prolific researchers, and caring private practitioners. Both are inspirational teachers and lifelong learners, always questioning and exploring the frontiers of dental knowledge with fresh insights and innovative approaches to everyday clinical dentistry. Exceptional teachers are hard to find, but these individuals are always rising to the challenge of turning on the lights in our darkness. Both are aware that only biologic principles dictate final clinical outcomes. Through their knowledge and expertise, they guide each of us in our search for the elusive truths in implant dentistry.

Based on their clinical experiences and research findings, this textbook is comprehensive and engaging. Written by clinicians for clinicians, the flow and language are clear and to the point. The chapters progressively address diagnosis as well as simple to more complex single-tooth implant scenarios. The book begins with a discussion of the history and rationale for anterior and posterior single-tooth implants, and then it walks the reader through the three types of sockets—type 1, type 2, and type 3—and their various indications and limitations. An entire chapter is devoted to clinical management of posterior teeth, followed by a chapter on cementation and impression-making techniques and complications. The final chapter is a clinical case appendix detailing 11 cases of single-tooth replacement in all types of sockets previously described. What a treasure trove!

This fresh and insightful publication by two world-class masters in clinical dentistry who have worked together for decades will inspire the reader to keep learning and growing in the ever-changing world of dental knowledge. Learn from the best, increase your clinical predictability, enhance your problem-solving capabilities, and watch your practice grow with new knowledge and confidence. Let the lantern of learning keep shining.

H. Kendall Beacham, MBA
Assistant Dean, Linhart Continuing Education Program
New York University College of Dentistry
Our love and passion for dentistry as well as a desire to share what we have learned over the years as clinicians, teachers, and researchers led us to write this modern-day textbook on the single-tooth implant. The replacement of the single tooth with a dental implant is one of the most common clinical situations practitioners face on a daily basis.

During our respective careers and close collaboration over the last 15 years, we have completely modified our approach to the management of hopeless teeth, especially in the esthetic zone. In the past, sockets were left untouched after tooth extraction for months before attending to the residual ridge. Today we perform “one surgery, one time” whenever possible, which is quite often and a huge benefit to both the patient and clinician alike. We have documented the periodontal and restorative interrelationships in treatment with great success alongside new and innovative techniques that enhanced esthetic outcomes in less treatment time for our patients.

During the compilation of this book, the reader was always foremost in our minds, with the hope of providing not only a better understanding of diagnosis and treatment with evidence-based concepts but also biologic principles of wound healing, thus making patient care faster, easier, simpler, more predictable, and, in many cases, less costly.

We hope you enjoy seeing the results of our professional journey in this challenging field and enjoy reading this textbook as much as we enjoyed composing it. We wish you much success in the treatment endeavors with your patients!

With contributions from

Guido O. Sarnachiaro, DDS
Clinical Assistant Professor
Department of Prosthodontics
New York University College of Dentistry
Private Practice
New York, New York

Richard B. Smith, DDS
Private Practice
New York, New York

Acknowledgment

Special thanks to Adam J. Mieleszko, cdt, for all the laboratory work presented throughout this book.
IN THIS CHAPTER:

- Immediate Versus Delayed Tooth Replacement Therapy
- Clinical Example
- Challenges with Immediate Implant Placement
- Classification of Extraction Sockets
- Diagnostic Aids for Socket Management: Radiographic and Clinical Examination
Chapter 1

History and Rationale for Anterior and Posterior Single-Tooth Implants

The single-tooth implant restoration comprises roughly one-half of all the implant case types that present daily in a clinical practice, and in the authors’ experience, many are in the esthetic zone. This section discusses some of the current concepts, science, and knowledge associated with immediate implant placement and provisional restoration in anterior postextraction sockets, better known as immediate tooth replacement therapy because both the root of the tooth and the clinical crown are being replaced simultaneously.

Some common questions that arise when a tooth is removed and an implant is placed into a fresh extraction socket include the following:

- What happens when a tooth is extracted?
- What kind of hard and soft tissue dimensional changes take place as a result?
- Are there differences in wound healing of anterior versus posterior extraction sockets?
- Should flap elevation be employed to remove the root remnant?
- Should primary flap closure be used, or should the socket be allowed to heal by secondary wound intention?
- What graft, if any, should be used?
- Should a connective tissue graft be placed in conjunction with the implant?
- What is the proper 3D spatial position of the implant within the extraction socket?
- Does the graft alter the wound healing process of the extraction socket?
- Does it make a difference if there is a residual gap after implant placement?
- Should a provisional restoration or custom healing abutment be fabricated in conjunction with the implant, or is it better just to place a stock healing abutment? Which would be better in regard to implant survival, osseointegration, and esthetic success?

These are just some of the questions that arise when immediate placement of implants into postextraction sockets is discussed. All of these topics remain controversial, and every practitioner has his or her own solutions, but how reliable are the results? This book seeks to answer these questions and to provide objective and concrete information to help clinicians, both specialists and general practitioners alike, place single-tooth implants and restore them with consistent periodontal, restorative, and esthetic outcomes in various clinical situations.
Immediate Versus Delayed Tooth Replacement Therapy

The survival rates for immediate implant placement are equal to, if not slightly higher than, those for delayed implant placement. The literature seems to support this. While the delayed protocol has survival rates higher than 90%, the immediate protocol boasts survival rates of 95%. Among anterior teeth alone, the survival rate increases to 97%. So it stands to reason: If the placement of an implant directly into the extraction socket has no bearing on that socket’s ability to heal, why not do it? After all, the socket is genetically engineered to heal whether or not a sterile titanium screw, which is biologically acceptable and compatible, is placed.

The main advantage of immediate tooth replacement therapy is that it condenses treatment procedures into fewer patient appointments, thereby reducing overall treatment time and increasing patient comfort while preserving the natural shape of the surrounding hard and soft tissues (Table 1). Most of the procedures such as tooth extraction, implant placement, socket grafting, and provisional restoration are delivered at the first treatment appointment, so more time should be appropriately allotted. With this approach, the clinician has the ability and opportunity to preserve hard and soft tissues at the time of tooth extraction, especially for a single tooth and maybe even multiple adjacent implants. This preservation concept is critical for esthetics, which is a major advantage with today’s esthetically demanding and knowledgeable patients.

Conversely, delayed implant placement affords the clinician the opportunity to perform all site development prior to implant placement, provided that the clinical situation is amenable to augmentation and correction. However, this protocol requires more treatment time: First the tooth is extracted, then the socket must heal for several months before implant placement with contour grafting is performed either as a single- or two-stage procedure. Once the implant has integrated, the implant is surgically exposed (two-stage procedure), and a flat profile healing abutment can be placed. The patient must return for nonsurgical soft tissue sculpting after soft tissue healing around the healing abutment, which is subsequently followed by another appointment for final impression making and definitive restoration (Table 2). This prolonged course of treatment is not ideal for the patient or the clinician, especially if all of the anatomy is present prior to tooth extraction. In addition, once the proximal contacts are eliminated following tooth removal, both interdental papillae shrink, and they are not always easily retrieved, especially in a thin scalloped phenotype. In 1997, Jemt showed that 1.5 years after implant placement, the mesial papilla filled completely only 68% of the time in 25 single-tooth implant sites (21 anterior sites), while the distal papilla had complete fill less than half the time (48%). Furthermore, papillae may not re-form to their pretreatment height of roughly 40% of the tooth length from the gingival zenith position. Immediate tooth replacement therapy provides a better opportunity for this re-formation.

While the delayed approach allows for soft tissue maturation and site development,
Immediate Versus Delayed Tooth Replacement Therapy

Immediate tooth replacement therapy offers the distinct advantage that the existing tooth extraction site and socket become the osteotomy to help guide the placement of the implant. In a fresh extraction socket, the mucosal tissue is exposed from the trauma, so the provisional restoration or custom healing abutment should be well adapted to the contours of the extraction socket walls, maintain the peri-implant tissue in the preextraction state, and be cleaned or disinfected (ie, steam cleaning) prior to insertion regardless of the material used. The beauty of immediate provisional restoration is that the soft tissue architecture can be captured and preserved immediately at the time of tooth removal. The goal of therapy is to preserve, maintain, and protect the existing tissues rather than try to recreate what is lost. Proper 3D implant placement, platform switching, and correct soft tissue support with a provisional restoration can result in a predictable restorative and esthetic outcome.

<table>
<thead>
<tr>
<th>TABLE 1 Immediate implant protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appointment #</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

TABLE 2 Delayed implant protocol

<table>
<thead>
<tr>
<th>Appointment #</th>
<th>Surgical intervention</th>
<th>Healing time (weeks)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tooth extraction</td>
<td>6-12</td>
</tr>
<tr>
<td>2</td>
<td>Ridge augmentation*</td>
<td>12-24</td>
</tr>
<tr>
<td>3</td>
<td>Early implant placement*</td>
<td>12-24</td>
</tr>
<tr>
<td>4</td>
<td>Stage 2 uncovering</td>
<td>2-4</td>
</tr>
<tr>
<td>5</td>
<td>Nonsurgical soft tissue sculpting</td>
<td>2-4</td>
</tr>
<tr>
<td>6</td>
<td>Impression making</td>
<td>None required</td>
</tr>
<tr>
<td>7</td>
<td>Delivery of definitive restoration</td>
<td>None required</td>
</tr>
</tbody>
</table>

*Note that procedures #2 and #3 can be combined in some instances.
Clinical Example

A 21-year-old woman with a high smile line presented with advanced external resorption of the maxillary right central incisor at the mesiofacial aspect (Figs 1 to 3). The periapical radiograph showed a cavernous lesion that undermined the structural integrity of the tooth (Fig 4). The soft tissue margin of the right central incisor was slightly more coronal than that of the left central incisor, which is a benefit in treatment if recession should occur (see Fig 2). During tooth extraction, the weak coronal tooth structure fractured with the slightest force (Fig 5). The ingrowth of granulomatous tissue is seen within the mesiofacial socket wall (Fig 6). Sharp dissection with a no. 15c scalpel blade was used to remove the affected tissue, and a fine tapered surgical diamond bur (Brasseler #859 long shank) was used to section the root faciopalatally (Fig 7). The residual roots were luxated and removed without damaging the extraction socket (Fig 8; see chapter 2 for tooth extraction techniques).

The socket was thoroughly debrided (Fig 9), and a 5.0-mm-diameter implant (Zimmer Biomet) was placed to the palatal aspect of the socket to allow platform switching (Fig 10). A preformed gingival shell former (iShell, BioHorizons/Vulcan Custom Dental) was used to capture the preextraction state of the
peri-implant tissues (Figs 11 and 12). The shell was joined to a screw-retained PEEK (polyetheretherketone) temporary cylinder with acrylic resin (Super-T, American Consolidated) with the accompanying clinical crown (Fig 13). After autocuring of the acrylic resin, it was removed intraorally, contoured, and custom colored (OPTIGLAZE Color, GC America) (Figs 14 and 15) to match the contralateral central incisor. Note how the preformed gingival shell former captures the shape of the subgingival contours of the extraction socket without voids (see Fig 14), which would normally occur due to the formation of a clot as well peri-implant soft tissue collapse.

The provisional crown restoration was tried back onto the implant to verify the shade, contour, and nonocclusal contact in maximum intercuspal position (MIP) and lateral excursive movements (Fig 16). The provisional crown was subsequently removed, and a flat-profile healing abutment with platform switching was placed to allow a small-particle, mineralized cancellous allograft to be packed into the labial gap (Fig 17). The healing abutment was then removed, and the provisional crown was reseated to contain and protect the graft material during the healing phase of therapy (Figs 18 and 19). After 1 week of uneventful healing, the patient
returned to the office and showed resolution of the marginal gingival inflammation (Fig 20).

At this point, the patient embarked on an exchange student program in Europe and did not return for final impression making until 13 months postsurgery (Fig 21). The tissue was stippled and healthy, and it was clear that the disease had fully resolved upon first removal of the provisional restoration prior to impression making (Fig 22). Pattern Resin (GC America) was used to capture the soft tissue profile so
Chapter 1: History and Rationale for Anterior and Posterior Single-Tooth Implants

that an accurate cast could be created (Figs 23 and 24). A metal-ceramic screw-retained definitive restoration was made in the dental laboratory (Figs 25 and 26). Attention was paid to the midfacial subgingival contour of the restoration to support the soft tissues at the proper gingival level to match the contralateral central incisor (Fig 27). Soft tissue blanching can be seen upon final crown insertion (Fig 28).

The technique of nonsurgical tissue sculpting is an effective treatment strategy in soft tissue contouring. The implant restoration is well integrated and in harmony with the surrounding teeth, tissues, and esthetics at 3 years post-treatment (Figs 29 to 31). The postoperative periapical radiograph shows radiographic bone stability 3 years after treatment (Fig 32).
Challenges with Immediate Implant Placement

One of the biggest challenges that arises when most surgeons extract a tooth and place an implant into an extraction socket is what to do with the residual gap between the facial surface of the implant and the palatal aspect of the labial bone plate. Should a bone graft be placed? Is a bone graft necessary to achieve better survival rates of the implant in the esthetic zone? Will a bone graft improve osseointegration or bone-to-implant contact around the implant? Will a bone graft change the cell type that occupies the implant surface? Will a bone graft prevent ridge collapse, thereby enhancing esthetics and preventing tissue discoloration?

Several studies have reported high survival rates without bone grafting, which seems to support the conclusion that a bone graft is not critical for implant success.2-9 Probably the most common side effect of placing an implant into a fresh extraction socket is collapse of the facial ridge with midfacial recession. This occurs due to multiple factors: (1) the implant was placed or angulated excessively forward within the socket, leaving a paper-thin wall of bone, or (2) part of the buccal plate bone crest was missing during implant placement. Any of these clinical situations holds the potential risk for recession with immediate implant placement.19,20 Even though the implant will integrate, the case will be a failure cosmetically due to loss of the labial bone plate (Figs 33 to 35).

Fig 33 Dentofacial smile view of a patient who had received an immediate implant to replace the maxillary right lateral incisor at a previous dental office. Note the tissue discoloration associated with the implant and restoration. The dark color from the underlying titanium is distracting and unattractive.

Fig 34 Intraoral view of the maxillary lateral incisor clearly showing the extent and magnitude of the discolored implant restoration, which extends beyond the free gingival margin.

Fig 35 Following full-flap elevation to repair the site with a subepithelial connective tissue graft, note the lack of bone covering roughly half of the labial surface of the implant that leads to the dark discoloration of the tissues.
A second risk, and by no means less significant, is the potential loss of the interdental papilla following immediate (or delayed) implant placement (Fig 36). Several authors have suggested that a minimum distance of 1.5 mm be maintained between the implant and any adjacent tooth to maintain the crestal bone between the tooth and implant.21,22 The horizontal formation of biologic width and crestal pressure necrosis may be contributing factors in interdental crestal bone loss and recession if the implant-tooth distance is inadequate23 (Fig 37). Even though Khayat et al showed no evidence of pressure necrosis (resorption) of crestal bone with extremely high insertion torque of up to 178 Ncm, they did not measure the bone thickness surrounding the implants postinsertion.24 Subsequently, Barone et al correlated crestal bone loss with osseous thickness, concluding that there is a greater risk of hard tissue loss with high insertion torque (pressure) when the contiguous bone dimension is less than 1.0 mm.25

The clinical reality is that implants “drift” and migrate within the extraction socket to the side of least resistance both labially and interdentally (ie, the gap) during final placement to achieve the highest insertion torque value for primary stability. With the tapered coronal portion, the implant head is frequently placed subcrestally and in contact with the palatal bone during insertion. As the implant is torqued into place, the implant “bounces” off the palatal bone wall and migrates to the facial aspect of the socket (Fig 38). The use of a dynamic or static guide may be helpful to keep the osteotomy clean and the implant position on target for the intended placement.

It is important to understand that not all extraction sockets are the same, and not all are suitable for immediate tooth replacement therapy. See chapter 2 for more information on the bone gap as well as chapters 3 and 4 on type 2 and type 3 sockets, respectively.
Classification of Extraction Sockets

There are three different types of sockets (Figs 39 to 41) following tooth removal, and all have the prospective risk of midfacial recession. Type 1 sockets are the most ideal clinical situation because all the bone and soft tissues are present (see Fig 39). Type 2 sockets are less ideal because they present with a dentoalveolar dehiscence defect of the labial plate of bone that increases the risk of midfacial recession (see Fig 40 and chapter 3). Type 3 sockets present with an existing midfacial recession deficiency indicative of loss of both hard and soft tissues (see Fig 41 and chapter 4). Type 1 sockets are more predictable to treat than the other classification types; however, there are specific treatment protocols and indications that allow these other types to be treated under the right conditions. Type 2 sockets are clinically deceiving because the soft tissue is available and appears the same as Type 1 sockets prior to tooth removal, but this soft tissue is only supported by the tooth root and not the underlying bone, which is absent. If the buccal plate is partially missing, there is risk of gingival recession when the tooth is extracted and an implant is placed. This is where most clinicians can get into trouble.
Fig 39 Illustration of a type 1 extraction socket, defined as the labial bone plate and associated soft tissues being intact and present prior to tooth extraction.

Fig 40 Illustration of a type 2 extraction socket, defined as the soft tissues being intact and present but the labial bone plate possessing a dentoalveolar dehiscence defect prior to tooth extraction.

Fig 41 Illustration of a type 3 extraction socket where there is an existing midfacial recession deficiency indicative of loss of both hard and soft tissues prior to tooth extraction.
Diagnostic Aids for Socket Management: Radiographic and Clinical Examination

CBCT

With the advent of improved technology, specifically CBCT, clinicians now have the ability to evaluate a potential extraction site prior to treatment and make assessments about potential obstacles they may encounter during treatment. This has become the standard of care in most cases prior to implant placement. Several enhanced CBCT systems allow sectional scans to be performed to limit the amount of radiation exposure during this diagnostic phase. A sextant and even a single tooth can be imaged to assess the preoperative condition (Figs 42 to 45).

Fig 42 CBCT image of a patient with a Class II, division 2 malocclusion and a labial bone fenestration seen midroot on this radiograph.

Fig 43 CBCT image of a patient with a fractured clinical crown visible on the palatal aspect at the junction between the tooth root and crown restoration.

Fig 44 CBCT image of a patient with an internal resorption lesion and an apical root fenestration.

Fig 45 CBCT image of a patient with a labial bone plate dehiscence defect or type 2 socket.
Probes

Another useful and practical diagnostic tool is the periodontal probe, which can be used for bone sounding to gauge the socket type based on the sulcus depth and osseous crest location. The use of a color-coded probe (Colorvue Biotype Probe, Hu-Friedy) can be especially helpful in appraising the periodontal phenotype of the patient before treatment (Fig 46). The white-tipped probe is used first. If it is visible under the facial aspect of the free sulcular gingiva, then the gingival phenotype is thin (Fig 47). If it is not visible, then the green-tipped probe is used to determine an intermediate phenotype (Fig 48) and the blue-tipped probe a thick phenotype (Fig 49).

Figs 46 to 49 Color-coded periodontal probes for appraising the periodontal phenotype of the patient.
References

Index

Page numbers followed by “f” denote figures and “t” tables.

A
Absorbable membranes, 84
Abutments
biologic width, 67f
ceramic, 64f
custom healing
description of, 81–82
with dual-zone grafting and iShell, 55–56, 55f–57f
fabrication of, 80f
illustration of, 57f
in prosthetic socket sealing, 46, 47f
removal of, 125
implant and, interface between, 64
metal, 65f
“one abutment, one time” approach, 69
overcontouring of, 28
selection of, 64, 65f
transmucosal, 30
Acrylic resin
cells that adhere to, 62
description of, 56
Acrylic veneer facing, 139
Allografts
corticocancellous, 45
definition of, 44
Alloplasts, 44
Alveolar ridge
augmentation of
connective tissue grafts for, 31
implant placement with, 93
dimensional change of, 37, 38f–39f
Ankylosed teeth, 65–66
Anterior maxilla, 69
Apical pressure necrosis, 71
Atraumatic tooth extraction, 21, 79, 85f, 142, 159, 170, 179
Autografts, 44

B
β-tricalcium phosphate, 44
Biologic width, 67f, 68, 68f, 70
Bone gap
distance of. See Gap distance.
hard tissue grafting of, 37
Bone grafts
allografts, 44
alloplasts, 44
autografts, 44
for dual-zone socket management, 44f, 44–45
xenografts, 44, 45f
Buccal fistula, 81
Buccal plate
dehiscence of, 87
description of, 12

C
CAD/CAM, 105
Cancellous allograft, 112
CBCT, for extraction socket management, 14, 14f
Cementation, 131–133
cementing die, 151f
Cementoenamel junction, 25, 111, 208
Cemento-enamel junction, 25, 111, 208
Cement-retained provisional restorations, 64, 66f, 95, 137
Cement-retained restorations, 24
Ceramic abutment, 64f
Chronic fistula, high smile line and, 178–185, 178f–185f
Clinical crown fracture, 21, 21f
Coaxial implants, 69, 69f
Collagen membranes
absorbable, 84
ice cream cone technique for, 84–87, 84f–87f, 93f
nonabsorbable, 84
Color difference, 41
Complications
occlusal overloading, 136, 136f
provisional restorations, 139
Composite resin, 56
Connective tissue grafts
advantages of, 31
around implants, 31
disadvantages of, 31
Corticocancellous allograft, 45
Crestal bone loss, 11
Cross-linked collagen membrane, 80f, 82, 85, 199
Custom healing abutment
description of, 81–82
with dual-zone grafting and iShell, 55–56, 55f–57f
in esthetic zone, 133
fabrication of, 80f
illustration of, 57f, 218f
in prosthetic socket sealing, 46, 47f
removal of, 125
Cylindrical implants, 66

D
Delayed tooth replacement therapy
flap design for, after ridge healing
flap technique, 93–97
punch technique, 89–92, 90f–91f
with immediate provisional restoration, 88–89
immediate tooth replacement therapy versus, 2–3
for molars, 127–128
protocol for, 3t
survival rates for, 2
in type 2 extraction sockets, 84–89
Dentoalveolar dehiscence defects, 77
Dermis allografts, 31
Digital impression, 136
Dual-zone grafting
 custom healing abutment with, 55–56, 55f–57f
description of, 153, 196
full provisional restoration with, 58–61, 201

Dual-zone socket management
 benefits of, 42–43
 bone graft materials for, 43–45, 44f
 bone zone, 42
definition of, 42
tissue zone, 42
Dual-zone therapeutic concept, 106, 148

E
Edentulous ridges, connective tissue grafts around, 31
Emergence profile, implant position effects on, 25–26

Esthetic zone, custom healing abutment in, 133

F
Facial bone gap, 32
Faciopalatal ridge collapse, 41–42

Fibroblasts, 62

Fistulae, 65

Flapless tooth extraction, 19–21
Flapped tooth extraction, 19–21

Flat noncontoured healing abutment, 53f
Free gingival margin
 buccal fistula above, 81
description of, 21, 25f, 40, 56, 210
Full provisional restoration with dual-zone grafting and iShell, 58–61

G
Gap distance
 importance of, 36
 wound healing and, 32–37
Gingiva
 discoloration of, 41
 recession of, 101, 149
 thickness of, 40
Gold plating, 65f, 149, 151f
Guided bone regeneration, 84

H
Healing abutment
 custom. See Custom healing abutment,
 flat contoured, 113
 flat noncontoured, 53f
 provisional restoration and, 62
 replacement of, 80f
 straight, 95
titanium, 106
High smile line
 case study of, 170–177, 170f–177f
 chronic fistula and, 178–185, 178f–185f
Horizontal fracture of maxillary central incisor, 141–152, 141f–152f
Hydroxyapatite, 44

I
Ice cream cone technique, 84–87, 84f–87f, 93f
Immediate tooth replacement therapy
 advantages of, 2–3
 challenges associated with, 10–11
definition of, 1
 delayed tooth replacement therapy versus, 2–3
 implant design for, 66–71
 interdental papilla loss associated with, 11
 for molars
 alternative strategies, 122–123
description of, 117, 128
 protocol for, 3t
 recession with, 10
 side effect of, 10
 survival rates for, 2
 in type 2 extraction sockets, 77–83, 78f–83f
Implant(s)
 abutment and, interface between, 64
 coaxial, 69, 69f
 connective tissue grafts around, 1
 cylindrical, 66
design of, for immediate tooth replacement therapy, 66–71
 drifting of, 11
 failure of, 137f
 ideal position of, 25
 inverted body-shift design of, 69–71, 70f
 loading of, 35
 narrow-diameter, 34, 70, 94
 regular-width, 71
 smaller-diameter, 120
 spatial position of, 24
 straight, 69
tapered, 66
 thread design of, 66
 thread pitch of, 66
 tissue discoloration around, 41
 wide-body, 71
wider-diameter, 70, 120
zygomatic, 69

Implant angulation, 28, 122

Implant depth
 for platform switching, 30, 66
 restorative contour affected by, 29–30
 shallow, 29

Implant placement
 delayed. See Delayed tooth replacement therapy.
description of, 26, 27f
 immediate. See Immediate tooth replacement therapy.
in molar extraction sockets, 119–122
ridge augmentation with, 93
Implant positioning

restorative contour affected by, 25
restorative emergence profile affected by, 25–26
Implant stability, 119
Implant-abutment interface, 24
Implant-tooth distance, 121, 122f, 123
Impression-making techniques, 134–136

Interdental papilla

loss of, with immediate tooth replacement therapy, 11
proximal contact area and, 47–48
Internal resorption lesion

large, 153f–157f, 153–158
at maxillary central incisor, 159–163, 159f–163f
Inverta implant, 70f
Inverted body-shift design implant, 69–71, 70f
iShell
custom healing abutment with, 55–56, 55f–57f
full provisional restoration with, 58–61
illustration of, 46f
peri-implant soft tissue and, 222
in provisional restoration fabrication, 153, 166, 180, 188
seating of, 56
socket shape restored using, 109
technique for, 55–61

Labial bone plate

absence of, 1 mm midfacial recession with, 109–113
blood supply to, 19–20
loss of
case study of, 186–194, 186f–194f
at maxillary central incisor, 207–216, 207f–216f
thickness of, 20
Labial gap distance, 70
Labial ridge, 20–21
Labial tooth position, midfacial recession caused by, 101
Large internal resorption lesion, 153f–157f, 153–158
Lateral excursions, maximum intercuspal position of, 54
Lateral excursive movements, 6
Lithium disilicate veneer restorations, 212

Maxillary central incisor

horizontal fracture of, 141–152, 141f–152f
internal resorption lesion at, 159–163, 159f–163f
labial plate loss at, 207–216, 207f–216f
vertical crown fracture of, 164–169, 164f–169f
Maxillary first molar, external resorption lesion at, 217–219, 217f–219f
Maximum intercuspal position
description of, 6
of lateral excursions, 54
Membranes
absorbable, 84
collagen. See Collagen membranes.
nonabsorbable, 84
Metal abutment, 65f
Metal-ceramic restorations, 64, 108
Metal-ceramic screw-retained restorations, 126
Midfacial recession
labial tooth position as cause of, 101
1 mm, with absence of labial bone plate, 109–113
3 mm, 103–108
Molars
delayed tooth replacement therapy for, 127–128
extraction sockets, implant placement into, 119–122
immediate tooth replacement therapy for alternative strategies, 122–123
description of, 117, 128
multirooted, 119
second, 119
Mucogingival junction, 101, 102f
Mucoperiosteal flaps, 127
Multirooted teeth, tooth extraction for, 118–119

N

Narrow-diameter implant, 34
Nealon technique, 134
Nonabsorbable membranes, 84
Nonsurgical tissue sculpting, 8, 9f

O

Occlusal overloading, 136, 136f
Open tray technique, for impression making, 134
Osseointegration, 36
failure of, 32
Osseous crest, 63

P

Papilla-sparing incision, 93
PDL. See Periodontal ligament.
PEEK. See Polyetheretherketone.
Periapical lesions
description of, 65

tooth fracture with necrosis and, 195–206, 195f–206f
Peri-cementitis, 24
Peri-implant soft tissue
horizontal thickness of, 30–32
platform switching effects on, 31
thickness of, 40–42
Periodontal ligament
blood supply from, 19
description of, 70
Periodontal phenotype
description of, 31–32
thick, 148
thin, 44f
Periodontal probes
extraction socket management using, 15, 15f
illustration of, 15f
Platform switching
abutment selection in, 64
description of, 66–68
implant depth for, 30, 66
implant placement affected by, 68
peri-implant soft tissue affected by, 31
supracrestal biologic width, 68, 68f
Polyetheretherketone, 48, 51f, 109, 111, 125, 199, 208
Polyvinyl siloxane, 106
Posterior teeth
molars. See Molars.
multiradiated extraction sockets in, 117
Primary flap closure, secondary-intention wound healing versus, 33–34
Prosthetic socket sealing
custom healing abutment in, 46
description of, 46
dual-zone technique with, 48–54
illustration of, 113f
iShell. See iShell.
provisional crown restoration, 46–48, 47f–48f
Provisional restorations
bleeding upon removal of, 62
breakage or delamination of, 137–139
cement-retained, 64, 64f, 95, 137
complications with, 139
crown, 46–48, 47f–48f
finalization of, 146
healing abutment and, 62
immediate, delayed implant placement with, 88–89
iShell for fabrication of, 153, 166, 180, 188
screw-retained, 64, 64f, 95
seating of, 144
soft tissue sculpting with, 98, 98f
subgingival contours of, 135
Proximal contact area, interdental papilla and, 47–48
Punch technique, 89–92, 90f–91f
R
Regular-width implants, 71
Restorative contour
implant angulation effects on, 28
implant depth effects on, 29–30
implant placement effects on, 26, 27f
implant position effects on, 25
S
Screw-retained metal-ceramic crown, 97, 183, 192, 203
Screw-retained provisional restoration, 64, 64f, 95
Second molars, 119
Secondary-intention wound healing, primary flap closure versus, 33–34
Single-rooted anterior teeth, 21–23
Single-tooth implants, 1
Small beak extraction forceps, 142
Smaller-diameter implants, 120
Socket-shield procedure, 65
Soft tissue sculpting, with provisional restoration, 98, 98f
Square teeth, 31
Straight implants, 69
Subcrestal angle correction implant design, 169–170, 198
Subgingival contour, 29
Supra-cemental biologic width, 68, 68f
Supra-cemental gingival fibers, 142
T
Tapered implants, 66
Teeth
extraction of. See Tooth extraction.
morphology of, 31
Thread design, 66
Thread pitch, 66
Tissue discoloration around implants, 41
Tissue maturation, 106
Titanium healing abutment, 106
Tooth extraction
atraumatic, 21, 79, 85f, 142, 159, 170, 179
flapless, 19–21
flapped, 19–21
mucogingival junction after, 102f
for multirotted teeth, 118–119
single-rooted anterior teeth, 21–23
Tooth fracture with necrosis, periapical lesions, 195–206, 195f–206f
Transmucosal abutment, 30
Triangular teeth, 31
12-degree implant, 69f
Type 1 extraction sockets
case studies of, 141–185
description of, 12, 13f
management of, 19–72
Type 2 extraction sockets
after collagen membrane absorption, 87f
case studies of, 186–206
description of, 12, 13f
ice cream cone technique for, 84–87, 84f–87f, 93f
implants in
delayed placement of, 84–89
immediate placement of, 77–83, 78f–83f
survival rate for, 77
membranes for
absorbable, 84
nonabsorbable, 84
subclassification of, 77, 78f–79f
Type 3 extraction sockets
case studies of, 207–226
description of, 12, 13f
management of, 101–114
Type A socket, 120
Type B socket, 120, 124
Type C socket, 120–122, 121f
U
Ultrawide implants, 117f, 119, 217
Undercontour, 26
V
Vertical crown fracture, of maxillary central incisor, 164–169, 164f–169f
W
Wide-body implants, 71
Wider-diameter implants, 120
Wound healing
bone plate thickness in, 33
of extraction sockets, 20
gap distance and, 32–37
secondary-intention, primary flap closure versus, 33–34
X
Xenografts, 44, 45f, 146
Z
Zone of inflammation, 67f
Zone of irritation, 67f
Zygomatic implants, 69