Sleep Medicine for Dentists: An Evidence-Based Overview, Second Edition
To our students, patients, and research associates who have contributed to the progress in dental sleep medicine.

Library of Congress Cataloging-in-Publication Data

Title: Sleep medicine for dentists : an evidence-based overview / edited by Gilles J. Lavigne, Peter A. Cistulli, Michael T. Smith.
Subjects: MESH: Sleep Wake Disorders | Dentistry--methods | Mouth Diseases--complications | Tooth Diseases--complications
Classification: LCC RC547 | NLM WL 108 | DDC 616.8/4980246176--dc23
LC record available at https://lccn.loc.gov/2019056811

© 2020 Quintessence Publishing Co, Inc

Quintessence Publishing Co, Inc
411 N Raddant Rd
Batavia, IL 60510
www.quintpub.com

5 4 3 2 1

All rights reserved. This book or any part thereof may not be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

Editorial: Bryn Grisham & Samantha Smith
Design: Sue Zubek
Production: Sue Robinson

Printed in the United States
Second Edition

SLEEP MEDICINE FOR DENTISTS AN EVIDENCE-BASED OVERVIEW

Edited by

Gilles J. Lavigne, DMD, PhD, FRCD(c), hc, FACD, FCAHS, OC (CM)
Professor
Canada Research Chair on Pain, Sleep, and Trauma
Faculty of Dental Medicine
Université de Montréal
Clinical Research Scientist
Center for Advanced Research in Sleep and Trauma Unit
Sacred Heart Hospital (CIUSSS North Island)
Montréal, Québec

Peter A. Cistulli, MD, PhD, MBA, FRACP, FCCP, ATSF
Professor
ResMed Chair in Sleep Medicine
Charles Perkins Centre
Faculty of Medicine and Health
University of Sydney
Director of the Centre for Sleep Health and Research
Department of Respiratory and Sleep Medicine
Royal North Shore Hospital
Sydney, Australia

Michael T. Smith, PhD, DBSM
Professor of Psychiatry and Behavioral Sciences
Professor of Neurology
Director, Division of Behavioral Medicine
Johns Hopkins University School of Medicine
Baltimore, Maryland

QUINTESSENCE PUBLISHING

Berlin | Chicago | Tokyo
Barcelona | London | Milan | Mexico City | Moscow | Paris | Prague | Seoul | Warsaw
Beijing | Istanbul | Sao Paulo | Zagreb
Contents

Foreword by David Gozal viii
Preface ix
In Memoriam x
Contributors xi
Abbreviations xvi

Section I Introduction to Dental Sleep Medicine

1. The Nature and Structure of Sleep

 Cibele Dal Fabbro, Monica L. Andersen, Gilles J. Lavigne

2. Sleep Neurobiology

 Florin Amzica, Gilles J. Lavigne, Barry J. Sessle, Florian Chouchou

3. A Dental Perspective on the Classification of Sleep Disorders

 Raphaël C. Heinzer, Peter A. Cistulli, Alberto Herrero Babiloni, Gilles J. Lavigne

4. Role of Dentists in Sleep Medicine

 Gilles J. Lavigne, Raphaël C. Heinzer, Cibele Dal Fabbro, Michael T. Smith, Jean-François Masse, Fernanda R. Almeida, Takafumi Kato, Frank Lobbezoo, Peter A. Cistulli

Section II Sleep Breathing Disorders

5. Overview of Guidelines/Protocols for SDB

 Galit Almoznino, Rafael Benoliel, Frank Lobbezoo, Luc Gauthier

6. Sleep-Related Breathing Disorders

 Joseph M. Duncan, Andrew S.L. Chan, Richard W.W. Lee, Peter A. Cistulli

7. Pathophysiology of OSA

 Danny J. Eckert

8. Mouth Breathing, Dentofacial Morphology, and SDB

 Stacey D. Quo, Benjamin Pliska, Nelly Huynh
<table>
<thead>
<tr>
<th>9</th>
<th>Long-Term Consequences of OSA</th>
<th>50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frédéric Gagnadoux</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Periodontal Diseases and OSA</td>
<td>55</td>
</tr>
<tr>
<td>Maria Clotilde Carra, Joerg Eberhard, Peter A. Cistulli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Clinical Approaches to Diagnosis of Adult OSA</td>
<td>60</td>
</tr>
<tr>
<td>Anna M. Mohammadi, Richard W.W. Lee, Andrew S.L. Chan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Imaging in OSA</td>
<td>66</td>
</tr>
<tr>
<td>Kate Sutherland, Richard J. Schwab, Lynne E. Bilston</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>An Overview of OSA Treatment in Adults</td>
<td>72</td>
</tr>
<tr>
<td>Jesse W. Mindel, Ryan Donald, Ulysses J. Magalang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Diagnosis and Management of Pediatric OSA</td>
<td>77</td>
</tr>
<tr>
<td>Dimple Goel, Dominic A. Fitzgerald</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Orofacial Orthopedic Treatment</td>
<td>82</td>
</tr>
<tr>
<td>Stacey D. Quo, Benjamin Pliska, Nelly Huynh</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Oral Appliance Therapy</td>
<td>87</td>
</tr>
<tr>
<td>Fernanda R. Almeida, Kate Sutherland, Peter A. Cistulli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Upper Airway Surgical Management of OSA</td>
<td>92</td>
</tr>
<tr>
<td>Leon Kitipornchai, Stuart G. MacKay</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Emerging Therapies for OSA</td>
<td>96</td>
</tr>
<tr>
<td>Olivier M. Vanderveken</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Risks of Anesthesia in Patients with OSA</td>
<td>100</td>
</tr>
<tr>
<td>David R. Hillman</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Myofunctional Therapy for OSA</td>
<td>104</td>
</tr>
<tr>
<td>Wen-Yang Li, Jean-François Masse, Frédéric Séries</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Precision Medicine Approaches for OSA</td>
<td>107</td>
</tr>
<tr>
<td>Kate Sutherland, Peter A. Cistulli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Genetics of SDB</td>
<td>113</td>
</tr>
<tr>
<td>Sutapa Mukherjee, Lyle J. Palmer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section III Sleep Bruxism: From Oral Behavior to Disorder

23 Definitions, Epidemiology, and Etiology of SB 119
 Frank Lobbezoo, Jari Ahlberg, Daniel A. Paesani, Ghizlane Aarab

24 Clinical Approaches to Diagnosis of SB 124
 Kiyoshi Koyano, Yoshihiro Tsukiyama, Peter Wetselaar

25 SB as a Comorbid Condition of Other Sleep-related Disorders 129
 Ghizlane Aarab, Ramesh Balasubramaniam, Milton Maluly Filho, Gilles J. Lavigne

26 Physiologic Mechanisms Associated with SB Genesis 135
 Takafumi Kato, Kazuo Okura, Guido M. Macaluso, Gilles J. Lavigne

27 Psychosocial Factors in Sleep and Awake Bruxism and Other Oral Parafunctions 142
 Richard Ohrbach, Sylvia D. Kretbig, Ambra Michelotti

28 Genetic and Environmental Factors in SB 146
 Kazuyoshi Baba, Yuka Abe, Samar Khoury, Frank Lobbezoo

29 Consequences of SB on the Dentition, Dental Restorations, and Implants and How to Mitigate Them 152
 Sandro Palla, Iven Klineberg, Mauro Farella

30 Behavioral, Dental, Pharmacologic, and Alternative Management of SB 157
 Daniele Manfredini, Charles R. Carlson, Ephraim Winocur, Frank Lobbezoo

31 SB in Children and Adolescents 162
 Nelly Huynh, Naomi Kadoch, Christian Guilleminault
Section IV Sleep and Orofacial Pain

32 Definition and Classification of Orofacial Pains 169
 Alberto Herrero Babiloni, Donald R. Nixdorf

33 Pathophysiologic Conceptualizations of the Transition from Acute to Chronic Pain 175
 Claudia M. Campbell, Robert R. Edwards, Janelle E. Letzen

34 Mechanisms Underlying the Interactions Between Sleep Deficiency and Pain 178
 Monika Haack, Navil Sethna

35 Behavioral and Pharmacologic Approaches to Manage Chronic Pain Comorbid with Sleep Disturbances 183
 Monika Haack, Navil Sethna

36 Association and Putative Causality of Orofacial Pain Conditions and Sleep Disturbances 187
 Peter Svensson, Lene Baad-Hansen, Taro Arima, Antoon De Laat

37 Sleep and Headache 194
 Scott Maddalo, Shuja Rayaz, Michael T. Smith, Nauman Tariq

38 Pharmacologic Management of Sleep-Pain Interactions 201
 Traci J. Speed

39 The Use and Risks of Opioids in the Management of Orofacial Pain 205
 Alberto Herrero Babiloni, Léa Proulx-Bégin, Gilles J. Lavigne, Marc O. Martel

40 Nonpharmacologic Management of Insomnia and Orofacial Pain 210
 Daniel Whibley, Nicole K.Y. Tang, Michael T. Smith

Index 217
It is quite unbelievable that more than 10 years have elapsed since the first edition of *Sleep Medicine for Dentists* appeared! At that time, it seemed almost daring to publish a book on sleep disorders aimed at the dental profession. Yet, there is little doubt now that dentists are one of the many important portals of entry through which patients can gain earlier detection and therefore benefit from improved management of sleep disorders. Furthermore, the array of uniquely valuable and efficacious tools that dentists bring to the field is further enhanced by the fact that increased knowledge of sleep among any health care professional and by the public at large can only lead to better outcomes.

We cannot forget, or for that matter let anyone else forget, that sleep is a vital function and constitutes the fourth pillar of health and wellness. As such, rather than continue the isolationist route of silo building across professions and disciplines, focusing only on our area of expertise, there has been a slow and steady progressive evolution toward multidisciplinary and interdisciplinary cooperation in sleep medicine. Are we there yet? No, not yet, but we are moving in the right direction, and to continue getting there, we need to make sure that all health care professionals receive adequate and informative training focused around sleep and its disorders.

Before I comment on how this new edition of the book elegantly achieves such lofty goals, I want to remind ourselves that we tend to forget large portions of the wisdom generated by our predecessors. I was recently pointed to a paper published in 1913 by *The Boston Medical and Surgical Journal* (now *The New England Journal of Medicine*). In this short manuscript, Dr Irving Sobotky was already challenging the effectiveness of adenotonsillectomy in children and remarked on the high frequency of patients who continued to be mouth breathers despite “successful” surgeries. He further elaborated on the importance of nasal breathing. More than 100 years after this observation, we are still in pursuit of the elusive ideal of nasal breathing. Hopefully, this time, we can count on not only ENTs and sleep physicians but on the many other disciplines, and top among them, dentists, to help our patients breathe well through their noses.

As a sleep physician who has been deeply involved in sleep medicine over 30 years, I am thrilled to see the uniquely exquisite attention and effort paid in this new edition to facilitate learning and attract learners. The content is carefully divided and balanced between important areas of sleep that are pertinent to the dental profession, and the inordinately attractive and visually pleasing layout of text, tables, and graphics makes it nearly impossible to let go of the book once you get started. I would definitely hope that this textbook will become a mandatory part of the curriculum for all dental schools, and that it will stimulate many of its readers to not only put the knowledge gained to practice but also go and dig deeper and bring their ingenuity to the forefront, thereby advancing the field.

David Gozal, MD, MBA
Marie M. and Harry L. Smith Endowed Chair
Chairperson and Pediatrician-in-Chief
Department of Child Health
MU Women’s and Children’s Hospital
University of Missouri School of Medicine
Columbia, Missouri

It has been 11 years since the publication of the first edition of this dental sleep medicine book with Quintessence. The key aim of *Sleep Medicine for Dentists* was to provide a rapid source of practical information to students, practicing dentists, and scientists about the evolving field of dental sleep medicine. We sought to put a stake in the ground to herald the emergence of a new interdisciplinary field. The first edition was an instant success, with such strong continued interest that in the last few years the book has only been available for resale by a previous owner. This is a strong indication that the field of dental sleep medicine is growing in both the clinical practice and academic spheres. The book became an academic and board exam reference—a testament to its stature as an authoritative but concise resource. We thank everyone who believed in our collective work.

The role of dentistry in sleep medicine has evolved considerably over the last decade and is now accepted as an important component of the multidisciplinary approach to diagnosis and management of patients with diverse sleep complaints across the lifespan. There is a critical role for dentistry from childhood upper airway and oral development to management of adult sleep apnea, diagnosis of oral conditions linked to sleep-disordered breathing, sleep bruxism, and orofacial pain syndromes. What was previously considered the exclusive domain of the medical profession has now expanded to other disciplines, including dentistry, psychology, and physical/speech therapy. Dentists, dental therapists, and hygienists are among a team of collaborators that are increasingly and, sometimes uniquely, well-positioned in health care systems to maintain quality of life and optimal health for patients suffering with sleep-related breathing disorders, sleep bruxism, orofacial pain, and other orofacial-related syndromes that disrupt sleep and exacerbate pain and fatigue. The role of concomitant conditions (ie, comorbidities) with the above three major sleep problems is also of critical concern.

We believe the timing of this second edition is a perfect way to highlight the incredible advancements that have occurred in the last decade to entrench the role of dentistry in sleep medicine. The 2020 edition has been expanded from 24 to 40 chapters. As before, the book has 4 sections: Introduction to Dental Sleep Medicine, Sleep Breathing Disorders, Sleep Bruxism: From Oral Behavior to Disorder, and Sleep and Orofacial Pain. All previous chapters were updated, and new ones have been added based on the suggestions of many of our readers. The objective of this new edition is to present evidence-based material in a practical manner to guide students in their training and clinicians in their practice.

Editing such a book would have been impossible without the collective, respectful, and professional effort of the three editors, and our colleague Frank Lobbezoo, who provided invaluable input on the sleep bruxism section. We owe our gratitude to all authors and coauthors for their generosity of time, commitment, and integrity. They have come together to share with you the best of their knowledge and their passion for dental sleep medicine. We also want to thank Bryn Grisham and Samantha Smith from Quintessence for their perseverance in working on the second edition of the book.
In Memoriam

Christian Guilleminault (1938–2019)

This book is dedicated to Doctor Christian Guilleminault, who was a faithful advocate for the role and importance of dental sleep medicine.
Contributors

Ghizlane Aarab, DDS, PhD
Associate Professor
Department of Orofacial Pain and Dysfunction
Academic Centre for Dentistry
Amsterdam (ACTA)
University of Amsterdam and Vrije Universiteit Amsterdam
Amsterdam, Netherlands

Yuka Abe, DDS, PhD
Assistant Professor
Department of Prosthodontics
Showa University
Tokyo, Japan

Jari Ahlberg, DDS, PhD
Associate Professor
Department of Oral and Maxillofacial Diseases
University of Helsinki
Helsinki, Finland

Fernanda R. Almeida, DDS, PhD
Associate Professor
Department of Oral Health Science
Faculty of Dentistry
University of British Columbia
Vancouver, British Columbia

Galit Almoznino, DMD, MSc, MHA
Senior Lecturer and Head
Big Biomedical Data Research Laboratory
Orofacial Sensory Clinic
Taste and Smell Clinic
Department of Oral Medicine Sedation & Maxillofacial Imaging
Hebrew University Hadassah School of Dental Medicine
Jerusalem, Israel

Florin Amzica, PhD
Professor
Departments of Stomatology and Neuroscience
Faculties of Dentistry and Medicine
Université de Montréal
Montréal, Québec

Monica L. Andersen, PhD
Associate Professor and Vice-Chair
Department of Psychobiology
Escola Paulista de Medicina
Universidade Federal de São Paulo
São Paulo, Brazil

Taro Arima, DDS, PhD
Associate Professor
Faculty of Dental Medicine
Hokkaido University
Sapporo, Japan

Lene Baad-Hansen, DDS, PhD, Dr Odont
Associate Professor and Deputy Department Head
Department of Dentistry and Oral Health
Aarhus University
Aarhus, Denmark

Kazuyoshi Baba, DDS, PhD
Professor and Chair
Department of Prosthodontics
Showa University
Director
Showa University Dental Hospital
Tokyo, Japan

Ramesh Balasubramaniam, BDSc, MS, MRACDS (OralMed), FOMAA
Clinical Associate Professor
Faculty of Health and Medical Sciences
University of Western Australia Dental School,
Perth, Australia

Rafael Benoliel, BDS, LDS, RCS
Professor and Associate Dean for Research
Director
Center for Orofacial Pain and TMDs
Rutgers School of Dental Medicine
State University of New Jersey
Newark, New Jersey

Lynne E. Bilston, PhD
Senior Principal Research Fellow
Neuroscience Research Australia
Conjoint Professor in Medicine
University of New South Wales
Sydney, Australia

Claudia M. Campbell, PhD
Associate Professor
Department of Psychiatry and Behavioral Sciences
Johns Hopkins University School of Medicine
Baltimore, Maryland

Charles R. Carlson, PhD
Professor
Department of Psychology and Oral Health Practice
University of Kentucky
Lexington, Kentucky

Maria Clotilde Carra, DDS, MSc, PhD
Associate Professor
Department of Periodontology
Rothschild Hospital
Paris, France

Andrew S. L. Chan, MBBS, PGCertClinLds, MBA, PhD, FRACP
Deputy Director
Centre for Sleep Health and Research
Department of Respiratory and Sleep Medicine
Royal North Shore Hospital
Clinical Associate Professor
The University of Sydney School of Medicine
Sydney, Australia
Florian Chouchou, PhD
Assistant Professor
Department of Physical Activity and Sports Science
University of La Réunion
La Réunion, France

Peter A. Cistulli, MD, PhD, MBA, FRACP, FCCP, ATSF
Professor
ResMed Chair in Sleep Medicine
Charles Perkins Centre
Faculty of Medicine and Health
University of Sydney
Director of the Centre for Sleep Health and Research
Department of Respiratory and Sleep Medicine
Royal North Shore Hospital
Sydney, Australia

Cibele Dal Fabbro, DDS, MSc, PhD
Clinician
Instituto do Sono
Visiting Research Scientist
Center for Advanced Research in Sleep Medicine
Sacred Heart Hospital of Montréal
Montréal, Québec

Antoon De Laat, DDS, PhD
Professor
Department of Oral Health Sciences
Catholic University of Leuven
Leuven, Belgium

Ryan Donald, MD
Assistant Professor
Division of Pulmonary, Critical Care, and Sleep Medicine
Department of Medicine
The Ohio State University Wexner Medical Center
Columbus, Ohio

Joseph M. Duncan, MBBS
Sleep Fellow
Department of Respiratory and Sleep Medicine
Royal North Shore Hospital
Sydney, Australia

Joerg Eberhard, Dr med dent, MME
Chair of Lifespan Oral Health
Charles Perkins Centre
University of Sydney School of Dentistry
University of Sydney
Sydney, Australia

Danny J. Eckert, PhD
Professor
College of Medicine and Public Health
Director
Adelaide Institute for Sleep Health
Flinders University
Bedford Park, Australia

Robert R. Edwards, PhD
Associate Professor of Anesthesia
Pain Management Center
Brigham and Women's Hospital
Harvard Medical School
Boston, Massachusetts

Mauro Farella, DDS, PhD
Professor and Chair
Discipline of Orthodontics
Department of Oral Sciences
Sir John Walsh Research Institute
University of Otago
Dunedin, New Zealand

Milton Maluly Filho, DDS, PhD
Postdoctoral Fellow
Division of Sleep Medicine and Biology
Department of Psychobiology
Paulista School of Medicine
Federal University of São Paulo
São Paulo, Brazil

Dominic A. Fitzgerald, MBBS, PhD, FRACP
Pediatric Respiratory Sleep Physician and Professor
Discipline of Child & Adolescent Health
Department of Respiratory Medicine
The Children's Hospital at Westmead
Sydney Medical School
University of Sydney
Sydney, Australia

Frédéric Gagnadoux, MD, PhD
Professor
Department of Respiratory and Sleep Medicine
Angers University Hospital
Angers, France

Luc Gauthier, DMD, MSc
Visiting Professor
Faculty of Dentistry
Université de Montréal
Montréal, Québec

Dimple Goel, MBBS, MD, FRACP
Pediatric Sleep Fellow
Department of Respiratory Medicine
The Children's Hospital at Westmead
Conjoint Associate Lecturer
Pediatric and Child Health Division
University of Sydney
Sydney, Australia

Christian Guilleminault,* MD, DM, DBiol
Professor
Sleep Medicine Program
Department of Psychiatry and Behavioral Sciences
Stanford University School of Medicine
Redwood City, California

Monika Haack, MA, PhD
Associate Professor
Department of Neurology
Harvard Medical School
Beth Israel Deaconess Medical Center
Boston, MA

Raphaël C. Heinzer, MD-MPH
Associate Professor and Head
Center for Investigation and Research in Sleep
Lausanne University Hospital
Lausanne, Switzerland

*Deceased
Alberto Herrero Babiloni, DDS, MS
PhD Student
Center for Advanced Research in Sleep Medicine
Sacred Heart Hospital of Montréal
Université de Montréal
Division of Experimental Medicine
McGill University
Montréal, Québec

David R. Hillman, AM, MBBS, FANZCA, FRCP, FRACP (hon)
Clinical Professor and Senior Principal Research Fellow
Department of Pulmonary Physiology and Sleep Medicine
Sir Charles Gairdner Hospital
Centre for Sleep Science
University of Western Australia
Perth, Australia

Nelly Huynh, PhD
Associate Professor
Faculty of Dentistry
CHU Sainte-Justine Research Center
Université de Montréal
Montréal, Québec

Naomi Kadoch, DMD
Research Student
Faculty of Dentistry
Université de Montréal
Montréal, Québec

Takafumi Kato, DDS, PhD
Professor
Department of Oral Physiology
Graduate School of Dentistry
United Graduate School of Child Development
Osaka University
Sleep Medicine Center
Osaka University Medical Hospital
Osaka, Japan

Samar Khoury, PhD
Postdoctoral Fellow
Alan Edwards Center for Research on Pain
McGill University
Montréal, Québec

Leon Kitipornchai, BEng, MBBS, MEng, FRACS
Clinical Senior Lecturer
School of Clinical Medicine
University of Queensland
Brisbane, Australia

Iven Klineberg, AM, RFD, BSc, MDS, PhD, FDSRCS, FICD
Emeritus Professor of Prosthodontics
School of Dentistry
Faculty of Medicine and Health
Westmead Hospital Centre for Oral Health
University of Sydney
Sydney, Australia

Kiyoshi Koyano, DDS, PhD
Professor
Division of Oral Rehabilitation
Faculty of Dental Science
Kyushu University
Fukuoka, Japan

Sylvia D. Kreibig, PhD
Senior Research Scientist
Department of Psychology
Stanford University
Stanford, California

Gilles J. Lavigne, DMD, PhD, FRCD, hc, FACP, FCAHS, OC (CM)
Professor
Canada Research Chair on Pain, Sleep, and Trauma
Faculty of Dental Medicine
Université de Montréal
Clinical Research Scientist
Center for Advanced Research in Sleep and Trauma Unit
Sacred Heart Hospital (CIUSSS North Island)
Montréal, Québec

Richard W. W. Lee, MBBS, PhD, FRACP
Codirector
Sleep Investigation Unit
Department of Respiratory Medicine
Gosford Hospital
Conjoint Senior Lecturer
School of Medicine and Public Health
University of Newcastle
New South Wales, Australia

Janelle E. Letzen, PhD
Postdoctoral Research Fellow
Department of Psychiatry and Behavioral Sciences
Johns Hopkins University School of Medicine
Baltimore, Maryland

Wen-Yang Li, MD, PhD
Lecturer
Respiratory and Critical Care Department
First Hospital of China Medical University
Shen Yang City, China

Frank Lobbezoo, DDS, PhD
Professor, Chair, and Vice-Dean
Department of Orofacial Pain and Dysfunction
Academic Centre for Dentistry Amsterdam (ACTA)
University of Amsterdam and Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

Guido M. Macaluso, MD, DDS, MDS
Director
Center of Dental Medicine
Dean
Department of Medicine and Surgery
School of Dentistry
University of Parma
Parma, Italy
Stuart G. MacKay, BSc (Med), MBBS (Hons), FRACS
Honorary Clinical Professor
Otolaryngology and Head and Neck Surgery
University of Wollongong Graduate School of Medicine and Illawarra Shoalhaven Local Health District
Wollongong, Australia

Scott Maddalo, MD, MS
Pain Management Specialist
Department of Anesthesiology
St John’s Riverside Hospital
Hawthorne, New York

Ulysses J. Magalang, MD
Professor
Neuroscience Research Institute
Division of Pulmonary, Critical Care, and Sleep Medicine
Department of Medicine
The Ohio State University Wexner Medical Center
Columbus, Ohio

Daniele Manfredini, DDS, PhD
Professor
School of Dentistry
Department of Biomedical Technologies
University of Siena
Siena, Italy

Marc O. Martel, PhD
Assistant Professor
Faculty of Dentistry and Department of Anesthesia
McGill University
Montréal, Québec

Jean-François Masse, DMD, MSc
Visiting Professor
Faculty of Dentistry
Laval University
Québec City, Québec

Ambra Michelotti, BSc, DDS
Professor
Department of Neurosciences, Reproductive Sciences and Oral Sciences
Division of Orthodontics
University of Naples Federico II
Naples, Italy

Jesse W. Mindel, MD
Assistant Professor of Neurology and Internal Medicine
Department of Neurology
Department of Medicine
Division of Pulmonary, Critical Care, and Sleep Medicine
The Ohio State University Wexner Medical Center
Columbus, Ohio

Anna M. Mohammadih, BA, MBBS, FRACP
Respiratory and Sleep Physician
Centre for Sleep Health and Research
Department of Respiratory Medicine
Royal North Shore Hospital
Charles Perkins Centre
University of Sydney
Sydney, Australia

Sutapa Mukherjee, MBBS, PhD
Associate Professor
Sleep Health Service
Respiratory and Sleep Services
Southern Adelaide Local Health Network
Adelaide Institute for Sleep Health
Flinders University
Adelaide, Australia

Donald R. Nixdorf, DDS, MS
Professor and Director
Division of TMD/Orofacial Pain
School of Dentistry
University of Minnesota
Minneapolis, Minnesota

Richard Ohrbach, DDS, PhD
Professor
Department of Oral Diagnostic Sciences
University at Buffalo School of Dental Medicine
Buffalo, New York

Kazuo Okura, DDS, PhD
Lecturer
Department of Stomatognathic Function and Occlusal Reconstruction
Institute of Biomedical Sciences
Tokushima University Graduate School
Tokushima, Japan

Daniel A. Paesani, DDS
Professor of Stomatognathic Physiology
University of Salvador
Buenos Aires, Argentina

Sandro Palla, Dr med dent
Emeritus Professor
Center for Dentistry
University of Zürich
Zürich, Switzerland

Lyle J. Palmer, PhD
Professor of Genetic Epidemiology
School of Public Health
University of Adelaide
Adelaide, Australia

Benjamin Pliska, DDS, MS
Associate Professor
Division of Orthodontics
Faculty of Dentistry
University of British Columbia
Vancouver, British Columbia

Léa Proulx-Bégin, BA
Doctoral Candidate
Department of Psychology
Université de Montréal
Montréal, Québec

Stacey D. Quo, DDS, MS
Clinical Professor
Department of Orofacial Sciences
School of Dentistry
University of California
San Francisco, California

Shuja Rayaz, MD
Resident
Department of Medicine
Mercy Hospital
Baltimore, Maryland
Richard J. Schwab, MD
Professor
Center for Sleep and Circadian Neurobiology
Perelman School of Medicine
University of Pennsylvania Medical Center
Philadelphia, Pennsylvania

Frédéric Sériès, MD
Professor
Centre de pneumologie
Québec Cardiology and Respirology
University Institute
Laval University
Québec City, Québec

Barry J. Sessle, MDS, PhD, FRSC
Professor
Faculty of Dentistry and Medicine
Department of Physiology
University of Toronto
Toronto, Ontario

Navil Sethna, MBchB
Clinical Director of the Pediatric Pain Rehabilitation Center
Senior Associate in Perioperative Anesthesia
Department of Anesthesiology, Critical Care, and Pain Medicine
Boston Children's Hospital
Boston, Massachusetts

Michael T. Smith, PhD, DBSM
Professor of Psychiatry and Behavioral Sciences
Professor of Neurology
Director, Division of Behavioral Medicine
Johns Hopkins University School of Medicine
Baltimore, Maryland

Traci J. Speed, MD, PhD
Assistant Professor
Department of Psychiatry and Behavioral Sciences
Johns Hopkins University School of Medicine
Baltimore, MD

Kate Sutherland, PhD
Research Fellow
Sleep Group
Charles Perkins Centre
Faculty of Medicine and Health
University of Sydney School of Medicine
Centre for Sleep Health and Research
Department of Respiratory Medicine
Royal North Shore Hospital
Sydney, Australia

Peter Svensson, DDS, PhD, DrOdont
Professor and Head
Section of Orofacial Pain and Jaw Function
Department of Dentistry and Oral Health
Aarhus University
Aarhus, Denmark

Nicole K.Y. Tang, DPhil CPsychol
Reader
Department of Psychology
University of Warwick
Coventry, United Kingdom

Nauman Tariq, MBBS
Assistant Professor of Neurology
Director, Headache Center
Johns Hopkins School of Medicine
Baltimore, MD

Yoshihiro Tsukiyama, DDS, PhD
Professor
Section of Dental Education
Division of Oral Biological Sciences
Faculty of Dental Science
Kyushu University
Fukuoka, Japan

Olivier M. Vanderveken, MD, PhD
Professor and Chairman of Ear, Nose, Throat, Head, and Neck Surgery
Department
Antwerp University Hospital
University of Antwerp
Antwerp, Belgium

Peter Wetselaar, DDS, MSc, PhD
Associate Professor
Department of Oral Kinesiology
Head
Clinic of Orofacial Pain and Dysfunction
Program Director
Oral Health Sciences
Academic Centre for Dentistry Amsterdam (ACTA)
University of Amsterdam and Vrije Universiteit Amsterdam
Amsterdam, The Netherlands

Daniel Whibley, PhD
Epidemiology Group
School of Medicine, Medical Sciences, and Nutrition
University of Aberdeen, Aberdeen, United Kingdom

Ephraim Winocur, DMD
Clinical Assistant Professor
Department of Oral Rehabilitation
The Maurice and Gabriela Goldschleger School of Dental Medicine
Sackler Faculty of Medicine
Tel Aviv University
Tel Aviv, Israel
Abbreviations

This reference list contains the most common abbreviations used throughout the book. Please note that these terms will not be spelled out in the book.

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AHI</td>
<td>Apnea-Hypopnea Index</td>
</tr>
<tr>
<td>BMI</td>
<td>body mass index</td>
</tr>
<tr>
<td>CBCT</td>
<td>cone beam computed tomography</td>
</tr>
<tr>
<td>CPAP</td>
<td>continuous positive airway pressure</td>
</tr>
<tr>
<td>CSA</td>
<td>central sleep apnea</td>
</tr>
<tr>
<td>CT</td>
<td>computed tomography</td>
</tr>
<tr>
<td>DSM</td>
<td>dental sleep medicine</td>
</tr>
<tr>
<td>EDS</td>
<td>excessive daytime sleepiness</td>
</tr>
<tr>
<td>ENT</td>
<td>ear, nose, and throat specialist/surgeon</td>
</tr>
<tr>
<td>ESS</td>
<td>Epworth Sleepiness Scale</td>
</tr>
<tr>
<td>MAD</td>
<td>mandibular advancement device</td>
</tr>
<tr>
<td>MRI</td>
<td>magnetic resonance imaging</td>
</tr>
<tr>
<td>NREM</td>
<td>non-REM</td>
</tr>
<tr>
<td>OA</td>
<td>oral appliance</td>
</tr>
<tr>
<td>OAT</td>
<td>oral appliance therapy</td>
</tr>
<tr>
<td>OSA</td>
<td>obstructive sleep apnea</td>
</tr>
<tr>
<td>PAP</td>
<td>positive airway pressure</td>
</tr>
<tr>
<td>PCRIT</td>
<td>pharyngeal upper airway collapsibility</td>
</tr>
<tr>
<td>PLMD</td>
<td>periodic limb movement disorder</td>
</tr>
<tr>
<td>PSG</td>
<td>polysomnography/polysomnogram</td>
</tr>
<tr>
<td>RBD</td>
<td>REM behavior disorders</td>
</tr>
<tr>
<td>REM</td>
<td>rapid eye movement</td>
</tr>
<tr>
<td>SB</td>
<td>sleep bruxism</td>
</tr>
<tr>
<td>SDB</td>
<td>sleep-disordered breathing</td>
</tr>
<tr>
<td>SRBD</td>
<td>sleep-related breathing disorder</td>
</tr>
<tr>
<td>TMD</td>
<td>temporomandibular disorder</td>
</tr>
</tbody>
</table>
in the animal kingdom, sleep is a universal and imperative biologic process to maintain and restore health. Sleep is defined as a physiologic and behavioral state characterized by partial isolation from the environment. A baby’s cry, the vibration of an earthquake, or a sudden pain intrusion will all interrupt sleep continuity; a sleeping brain maintains a sentinel function to awaken the organism for protection purposes.

The duration of sleep usually is 6 to 9 hours in adults. Although most adults sleep an average of 7.5 hours, some are short sleepers and some are long sleepers (ie, less than 5.5 hours and more than 9.0 hours, respectively). Good sleep quality is usually associated with a sense of having slept continuously through the night and feeling refreshed and alert on awakening in the morning. The perception of sleep quality is subjective and varies widely among individuals. Some individuals perceive their sleep as satisfying most of the time, and some consistently report being poor sleepers (eg, having difficulties in initiating or maintaining sleep—insomnia, feeling unrefreshed when they awaken, and having nightmares). However, sleep recording systems indicate that, in general, poor sleepers tend to underestimate the length of time they sleep (as do some good sleepers). The neurobiology of sleep is described in chapter 2, and a classification of the various sleep disorders relevant to dentistry is found in chapter 3.

Sleep-Wake Cycle
An adult’s 24-hour cycle is divided into approximately 16 hours of wakefulness and 8 hours of sleep. Synchronization and equilibrium between the sleep-wake cycle and feeding behaviors are essential for survival. Mismatches in the synchronization of the feeding cue and metabolic activity are associated with eating disorders. Poor sleep can cause health problems and can increase the risk of transportation- and work-related accidents and even death.

Homeostatic process
The propensity to sleep is directly dependent on the duration of the prior wakefulness episode. As the duration of wakefulness increases, sleep pressure accumulates and builds to a critical point, when sleep onset is reached. As this sleep pressure increases, an alerting circadian signal helps the person to remain awake throughout the day. The ongoing 24-hour circadian rhythm therefore runs parallel to the homeostasis process, also known as process S (Fig 1-1). The process S corresponds to the sleep pressure that individuals accumulate during the wakefulness period before being able to fall asleep. With increasing sleep pressure, sleep is proportionally longer and deeper in the following recovery period.

Changes in the frequency of slow-wave sleep waves can be estimated by a mathematic transformation of brain wave electrical signals or by quantitative spectral analysis of the electroencephalographic (EEG) activity. Rising or rebound of slow-wave EEG activity in the first hours of sleep is a marker of sleep debt. In contrast, a reduction in slow-wave activity is observed in patients with chronic pain. However, the cause-and-effect association of these biologic signals with reports of fatigue and poor sleep is unknown. During the day, the effects of energy expenditure are accumulated, which may be connected to the feeling of tiredness.

Two times in the 24-hour cycle are characterized by a strong sleep pressure, 4 PM and 4 AM, +/- 1 to 2 hours (see Fig 1-1). At a certain point, sleep pressure is so powerful that an individual will fall asleep regardless of the method or strategies used to remain awake.
Circadian rhythm

Humans tend to alternate between a period of wakefulness lasting approximately 16 hours and a continuous block of 8 hours of sleep (see Fig 1-1). Most mammals sleep around a 24-hour cycle that is driven by clock genes that control the circadian rhythm (process C). Light helps humans synchronize their rhythm with the cycles of the sun and moon by sending a retinal signal (melanopsin) to the hypothalamic suprachiasmatic nucleus. The suprachiasmatic nucleus is a network of brain cells and genes that acts as a pacemaker to control the circadian timing function.

The investigation of sleep-wake process C uses biologic markers to assess a given individual’s rhythm. A slight drop (hundredths of a degree centigrade) in body temperature and a rise in salivary and blood melatonin and growth hormone release—peaking in the first hours of sleep, around midnight in the 24-hour cycle—are key indications of the acrophase (high peak) of the process C. Interestingly, corticotropins (adrenocorticotropic hormone and cortisol) reach a nadir (lowest level) during the first hour of sleep. They then reach an acrophase in the second half of the night.

The process C can also be studied using temperature recordings in relation to hormone release and polygraphy to measure brain, muscle, and heart activities.

Ultradian rhythm

Under the 24-hour process C of sleep and wakefulness, sleep onset and maintenance are governed by an ultradian cycle of three to five periods in which the brain, muscles, and autonomic cardiac and respiratory activities fluctuate (Figs 1-2 and 1-3). These cycles consist of REM sleep (active stage) and NREM sleep (light and deep stages). The REM stage is known as paradoxical sleep in some countries.

In humans, a clear decline in electrical brain and muscle activities as well as heart rhythm is observed from wakefulness to sleep onset. This decline is associated with a synchronization of brain waves toward stage N1 of sleep. Stage N1 is a transitional period between wakefulness and sleep. Stage N2, which accounts for about 50% to 60% of total sleep duration, is characterized by two EEG signals—K-complexes (brief, high-amplitude brain waves) and spindles (rapid, spring-like EEG waves)—both described as sleep-promoting and sleep-preserving factors. Sleep N1 and N2 are categorized as light sleep.

Next, sleep enters a quiet period known as deep sleep, or stage N3, which is characterized by slow, high-amplitude brain wave activities, with dominance of delta sleep (0.5 to 4.5 Hz). This sleep period is associated with a so-called sleep recovery process.

Finally, sleep enters an ascension period and rapidly turns into either light sleep or REM sleep. REM sleep is associated with a reduction in the tone of postural muscles (which is poorly described as “atonia” in literature but is in fact hypotonia because muscle tone is never zero; see chapter 2, reference 13) and a rise in heart rate and brain activity to levels that frequently surpass the rates observed during wakefulness.

Humans can dream in all stages of sleep, but dreams during REM sleep may involve intensely vivid imagery with fantastic and creative content. During REM sleep, the body is typically in a paralyzed-like state (muscle hypotonia). Otherwise, dreams with intense emotional content and motor activity might cause body movements that could injure individuals and their sleep partners.

An understanding of the presence of ultradian sleep cycles is relevant because certain pathologic events occur during sleep, including the following sleep disorders:

- Periodic body movements (leg or arm) and jaw movements, such as SB, most of which are observed in stage N2 of sleep and with less frequency in REM sleep.
Sleep Recordings and Sleep Arousal

When a PSG of a sleeping patient (collected either at home with an ambulatory system or in a sleep laboratory) is assessed, the scoring of sleep fragmentation is a key element in analyzing sleep quality. Poor sleep quality, as reported subjectively by the patient, is associated on PSGs with more bedtime with wake after sleep onset (WASO), frequent arousals with or without body movements or with a high score of periodic limb movement (PLM), frequent stage shifts (from a deeper to a lighter sleep stage), respiratory disturbances (measured per hour by the respiratory disturbance index [RDI]), and higher muscle tone. All these signs of sleep fragmentation interrupt the continuity of sleep and alter the sleep architecture.

Sleep efficiency is another important variable to evaluate. A standard index of sleep impairment, sleep efficiency is defined as the amount of time asleep divided by the amount of time spent in bed, expressed as a percentage. Sleep efficiency greater than 90% is an indicator of good sleep.

The ultradian cycle of sleep, described previously, includes another repetitive activity: sleep-related arousals. During NREM sleep, arousals are recurrent (6 to 14 times per hour of sleep), involving brief (3 to 10 seconds) awakenings associated with increased brain, muscle, and heart activities (tachycardia or rapid heart rate) in the absence of the return of consciousness. In the presence of sleep movements, breathing disorders, or chronic pain, these arousals are more frequent. Sleep arousals can be viewed as the body’s attempt to prepare the sleeping individual (who is in a low-vigilance state) to react to a potential risk, ie, a fight-or-flight state.

- Sleep-related breathing events, such as apnea and hypopnea (cessation or reduction of breathing), observed in N2 and REM sleep
- Acted dreams with risk of body injury, diagnosed as RBD, which occur during REM sleep (see chapter 3)
The Nature and Structure of Sleep

Sleep arousals are concomitant with or precede most PLMs and SB (described also in chapter 26 on pathophysiology of SB, section III). In contrast, sleep apnea and hypopnea (described in section II) are respiratory distress–like events that trigger sleep arousals. An index of arousal per hour of sleep is estimated as well as arousal-related ones: frequency of shifts in sleep stage, PLMs, bruxism, snoring, and sleep-related apnea and hypopnea.

In addition to these methods, sleep fragmentation can be estimated by the presence of the cyclic alternating pattern (CAP) to evaluate the instability of sleep. CAP is an infraslow oscillation, with a periodicity of 20 to 40 seconds, between the sleep main-

Sleep and circadian rhythm entail several functions, including physical recovery, biochemical refreshment (eg, synaptic neuronal function; glial cell role in glymphatic process), memory consolidation, emotional regulation, and to a small extent, possible learning of simple tasks/behaviors\(^{15-22}\) (Box 1-1). A persistent reduction in sleep duration can cause physical and mental health problems because of the cumulative effect of lack of sleep on several physiologic functions (see chapters 9 and 33 to 35).

Lack of sleep is also known as sleep deprivation, that is, insufficient sleep resulting from short sleep duration or loss of a sleep segment because of environmental factors (eg, noise) or

BOX 1-1 Functions of Sleep

<table>
<thead>
<tr>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fatigue reversal</td>
</tr>
<tr>
<td>Sleep allows the individual to recover and reenergize.</td>
</tr>
<tr>
<td>Biochemical refreshment</td>
</tr>
<tr>
<td>Sleep promotes synaptic efficiency, glymphatic lavage, protein synthesis, neurogenesis, metabolic (eg, glycogen) restoration, growth (secretion of growth hormone peaks during sleep), etc.</td>
</tr>
<tr>
<td>Immune function</td>
</tr>
<tr>
<td>Reset or protection (complex interaction; causality under investigation).</td>
</tr>
<tr>
<td>Memory consolidation</td>
</tr>
<tr>
<td>Daytime learning needs sleep for memory consolidation.</td>
</tr>
<tr>
<td>Sleep seems to facilitate encoding of new information.</td>
</tr>
<tr>
<td>May also facilitate learning of simple tasks, modify behavior.</td>
</tr>
<tr>
<td>Psychologic well-being</td>
</tr>
<tr>
<td>Dreams occur in all sleep stages. REM dreams are more vivid.</td>
</tr>
<tr>
<td>Lack of sleep presents a risk of mood alteration to depression.</td>
</tr>
</tbody>
</table>

Developmental Changes in Sleep-Wake Patterns

The human sleep-wake pattern changes with biologic maturation and aging. In the first 6 weeks of life, sleep of infants is dominated by REM sleep, which occupies about 50% of their sleep time. Around age 6 to 9 months, their wakefulness and nighttime sleep pattern tends to become more synchronized with their parents' feeding and sleeping schedule.\(^{14}\) Preschool children sleep about 14 hours per 24-hour cycle, and most stop napping somewhere between the ages of 3 and 5 years. An important aspect related to development is the growth of the airway and involution of adenoids that seems to influence occurrence and resolution of snoring and apnea in children between 5 to 12 years of age (see chapter 14).

Pre-adolescent children are sleep–wake phase advanced. They fall asleep earlier and awake earlier than middle-aged adults. Teenagers tend to be phase delayed (get to bed later and wake later in morning) and tend to sleep about 9 hours per 24 hours (ranging from 6.5 to 9.5 hours), falling asleep and awakening later than their parents and younger siblings.

Most adults sleep about 6 to 7 hours on workdays and more on the weekends. By about the age of 40 to 45 years, adults' sleep starts to become more fragile, and individuals are more aware of being awake for a few seconds to a few minutes a night. In the elderly, the sleep–wake pattern returns to a multiphase pattern typical of young children. Elderly people go to sleep earlier than middle-aged adults and awake earlier in the morning, taking occasional naps (catnapping) during the day. Some may present advanced phase shift, ie, get to sleep earlier and wake earlier in morning.

The human biologic clock can adapt to sleep deprivation and changes in the sleep–wake schedule within certain limits. For example, some people can adapt better than others to jetlag or sleep deprivation because of night work (eg, flight crew, hospital staff), but most individuals find such variations difficult.

Sleep and Health

The diagnosis, prevention, and management of sleep disorders are currently domains of high impact in public health (eg, prevention of breathing disorders from childhood, management of daytime sleepiness to decrease the risk of transportation accidents, and the relationship of hypertension and sleep apnea).

Sleep and circadian rhythm entail several functions, including physical recovery, biochemical refreshment (eg, synaptic neuronal function; glial cell role in glymphatic process), memory consolidation, emotional regulation, and to a small extent, possible learning of simple tasks/behaviors\(^{15-22}\) (Box 1-1). A persistent reduction in sleep duration can cause physical and mental health problems because of the cumulative effect of lack of sleep on several physiologic functions (see chapters 9 and 33 to 35).

Lack of sleep is also known as sleep deprivation, that is, insufficient sleep resulting from short sleep duration or loss of a sleep segment because of environmental factors (eg, noise) or
a contributing medical condition (eg, pain, diabetes, mood/depression).

An experiment on sleep deprivation (4 hours of sleep over 3 to 4 days), done in young individuals who usually sleep for 8 hours, showed that sleep deprivation triggers mood alteration, sociability dysfunction, and complaints of bodily pain.23 This was recently reassessed over a 3-week protocol, and sleep disruption had more deleterious effects on pain perception and slow recovery in the most vulnerable subjects (see chapters 34 and 35).24 Another protocol using force awakening reported that women have altered temporal pain summation and men have more secondary hyperalgesia after a night of sleep disturbance.23 Many recent research data support the idea that sleep deprivation, anxiety, and low-grade inflammation are deleterious to learning and memory.26 Pain patients with sleep problems frequently report inflammation, poor sleep, and anxiety.26

Obviously, direct and indirect causalities of so many variables need more powerful analytic approaches; the emergence of “machine learning” in sleep research will help us to better delineate specific phenotypes and to select the most efficient treatment modality.27

Moreover, both too-short and too-long sleep durations have been associated with higher risks of diseases and mortality. However, the complicated interactions among lifestyle, mortality risk, and sleep duration remain to be understood.28 In fact, there is some evidence to support the relationship between sleep duration (too little or too much) and the risk of cardiovascular diseases (such as myocardial infarction and atherosclerosis), diabetes, obesity, depression, and even cancer.23, 28–31

Although these risk estimates are modest, they have been reproduced in too many studies to reject the putative effect of cumulative sleep debt on health maintenance. Higher risks of myocardial infarction have been found in women who are short sleepers as well as women who are long sleepers.31 Elevated risks of cardiovascular problems and atherosclerosis also have been observed in people who sleep too much during the day29 (see also chapter 9).

Cost of Inadequate Sleep

The direct and indirect costs of sleep disorders in Australia was estimated at US $7.5 billion for 2004, and the cost of inadequate sleep was estimated close to US $32 billion in 2016–2017.2 Furthermore, a study from Denmark, covering the period of 1998 to 2006, revealed that annual direct and indirect costs for patients with snoring, sleep apnea, and obesity hypoventilation syndrome were €705 (about US $800), €3,860 (about US $4,400), and €11,320 (about US $13,000), respectively.12 Furthermore, these individuals had lower employability and lower income—a condition present up to 8 years before the diagnosis of the conditions.

The American Academy of Sleep Medicine, in a report commissioned to the global research and consulting firm Frost & Sullivan, estimated the economic cost of untreated sleep apnea at US $150 billion, including loss in productivity as well as transportation and work accidents.35

Conclusion and Advice

Good-quality sleep is essential to physical recovery, biochemical refreshment, memory consolidation, and emotional regulation. The diagnosis, prevention, and management of disorders that interfere with the quality of sleep are domains of high impact in public health.

Dentists are in an excellent position to convey messages on the importance of good sleep habits and in collaboration with other health professionals to manage some sleep disorders such as SB, sleep apnea, and pain related to sleep (see chapters 4 and 5).

References

Index

Page references followed by “f” denote figures, “t” denote tables, and “b” denote boxes.

A

A-beta fibers, 175
Acetylcholine, 10, 138
Acoustic reflection pharyngometry, for obstructive sleep apnea, 68t, 70
Acrophase, 4
Active phasic arousal periods, 6
Active sleep. See REM sleep.
Active theory, 11
Acute pain
chronic pain transition of, 176
description of, 175
mechanisms of, 175–176, 176f
Adalimumab, 184
Adaptive servoventilation, 208
Addiction Behavior Checklist, 208
A-delta fibers, 175
Adenoids, 44
Adenosine, 11
Adenosine triphosphate, 11
Adenotonsillar hypertrophy
in obstructive sleep apnea, 79
sleep-disordered breathing associated with, 48
Adenotonsillectomy, 79, 80t, 165
Adolescents, sleep bruxism in, 162–165, 163t
Adrenocorticotropin hormone, 179
Adults
dentofacial morphology in, 48–49
mouth breathing in, 48–49
sleep-wake patterns in, 6
Airway
lower, 48
upper. See Upper airway.
Alcohol consumption, 16
Alldynia, 176, 189
Alpha-delta sleep, 20
American Academy of Sleep Medicine
International Classification of Sleep Disorders 3, 15, 16b, 24
obstructive sleep apnea recommendations, 72
sleep apnea costs, 7
sleep bruxism diagnostic criteria, 125, 125b
sleep duration recommendations, 183
Analgesics, 202, 202t
Anesthesia
in obstructive sleep apnea patients, 100–103
upper airway obstruction during, 101
Angiopoietin-2 gene, 114
Ankylosing spondylitis, 184
Antidepressants, 185, 202t, 202–203
Antiepileptics, 203
Antipsychotics, 203
Antispasmodics, 203
Anxiety, 143
Apnea
central sleep. See Central sleep apnea.
definition of, 15
obstructive sleep. See Obstructive sleep apnea.
Apnea-hypopnea index
definition of, 36
grading of, 15–16, 64
obstructive sleep apnea assessments, 64
oral myofunctional therapy effects on, 104
β-arrestin 1 gene, 114
Arthralgia, 170, 171t
Athens Insomnia Scale, 211
Atrial fibrillation, 61
Attention, obstructive sleep apnea effects on, 50
Attention-deficit/hyperactivity disorder, 163
Atypical facial pain, 173
Atypical odontalgia, 173
Aura, migraine with/without, 171, 194, 195b
B
Baclofen, 203
Bariatric surgeons, 23
Bariatric surgery, 74
Barrett esophagus, 18
Benzodiazepines, 16–17, 204
Berlin questionnaire, 16, 62, 195, 211
Beta-adrenergic blocking agents, 185
Bi-level positive airway pressure, 73, 79, 80t
Biofeedback, 158, 158t
Blood-brain barrier, 13
Bone-anchored maxillary protraction, 83, 84f
Bone-borne implant expansion, 83
Botulinum toxin, for sleep bruxism, 158t, 159–160
Brainstem, 9–10, 10f
Breathing. See Mouth breathing; Sleep-disordered breathing.
Bremer, Frédéric, 9
Bruxism, 142. See also Sleep bruxism.
Burning mouth syndrome, 172t, 173, 175, 191
Buspirone, 138

C
Caffeine, 195
Calcitonin gene-related peptide inhibitors, 196, 198
Cancer, obstructive sleep apnea and, 54
Candidate-gene association studies, 113t, 114–115
Cannabinoids, 181, 185, 204
CAP. See Cyclic alternating pattern.
Car accidents. See Motor vehicle accidents.
Carbamazepine, 203
Carbon dioxide, 42
Cardiovascular diseases, obstructive sleep apnea and, 52f, 53
Catastrophizing, 207
Catheteria, 18
Central obesity, 61
Central pattern generators, 136, 137f
Central sensitivity syndrome, 189
Central sensitization, 176–177, 189
Central sleep apnea. See also Sleep apnea.
characteristics of, 35, 37
description of, 15
diagnosis of, 37
opioids and, 206
polysomnographic findings in, 36f
risk factors for, 37
Central sleep apnea syndrome, 17
Cephalometry, for obstructive sleep apnea, 66, 67t, 70
C-fibers, 175
Cheyne-Stokes respiration, 37
Children
dentofacial morphology in, 48
mouth breathing in, 48, 82
obesity in, 79
sleep apnea in, 16
sleep bruxism in, 162–165, 163t
sleep-wake patterns in, 6
Choking, 20
Cholinergic-activating system, 9–10, 10f
Chronic insomnia, 210
Chronic migraine, 194
Chronic pain
 acute pain transition to, 176
 cannabinoids for, 185
 description of, 23
 etiology of, 175
 hypothalamus-pituitary-adrenal axis involvement in, 179–180
 imaging studies of, 177
 immune dysregulation in, 184
 peripheral sensitization in, 176
 sleep deficiency and, interactions between
 analgesics for, 202, 202t
 antidepressants for, 202t, 202–203
 antiepileptics, 203
 antipsychotics for, 203
 antispasmodics for, 203
 behavioral approaches for, 183–184
 causality of, 187–192
 mechanisms of, 178–181
 pharmacologic management of, 201–204
 sleep-disturbing medications for, 185
Circadian rhythms
 control of, 115
 description of, 3–4
 functions of, 6
 regulation of, 11
 ultradian rhythm, 4–5
Circadian rhythm sleep disorders, 16b
Classification, 169
Clonazepam, 138, 158t, 159–160
Clonidine, 139, 158t, 159–160
Cluster headache, 171, 172t, 192, 195t, 197–198
Cognitive behavioral therapy
 for exploding head syndrome, 199
 for insomnia, 183–184, 196–197, 212–214, 213
 for orofacial pain, 214
 for sleep, 214
Cognitive therapy, 213t
Comorbidities, 24
Computed tomography
 cone beam, 67t, 71
 obstructive sleep apnea evaluations, 66–68, 67t
Cone beam computed tomography, 67t, 71
Confusional arousal, 17
Congenital central hypoventilation syndrome, 115
Continuous positive airway pressure data monitoring capabilities of, 110
 mandibular advancement devices and, 88, 91
 obstructive sleep apnea treated with, 72–73, 80t, 96, 110
Cortical arousals, 42
Cortical neurons, 13
Corticosteroids, 185
Corticotropin-releasing hormone, 179
Cortisol, 138–139, 179, 185
Cranial nerve stimulation, 94
Craniofacial growth and development, 44–45, 82
Craniofacial phenotyping, 110f, 111
C-reactive protein, 183
Cyclooxygenase, 180
Cytokines, 179
Deep sleep, 4
Delta waves, 13
Dental casts, 31
Dental history, 29
Dental hygienists, 25
Dental schools, 25
Dental sleep curricula, 24–25
Dental sleep education, 24–25
Dental sleep medicine
 definition of, 22, 119
 dentist’s role in, 22–25
 interdisciplinary and intersectoral team effort in, 22–23
 neurologists in, 23
Dentists
 credentials/certification of, 33
 dental sleep education for, 24–25
 expertise of, 23–24
 in opioid crisis, 207–208
 sleep-disordered breathing screening by, 29
Dentoalveolar pain, 170, 172t
Dentofacial morphology, 48–49
Depression, obstructive sleep apnea and, 50
Development
 sleep’s role in, 14
 sleep-wake patterns affected by, 6
 Diabetes mellitus, 52, 52f
 Diaphragm, 48
 Difficult airway, 101, 103
 Dopamine, 150, 160
 Down syndrome, 162
Dreams/dreaming
 recollection of, 13
 in REM sleep, 4, 9, 13
 Dronabinol, 75
 Drug-induced sleep endoscopy, 68, 70, 96
 Dual-block mandibular advancement devices, 90
 Duloxetine, 203
E
Ecologic momentary assessment and intervention, 158
Edentulism, 56
Elderly, sleep-wake patterns in, 6
Epilepsy, sleep bruxism and, 132
Epworth Sleepiness Scale, 50, 51f, 62–63
E-selectin, 56
Excessive daytime sleepiness
 Epworth Sleepiness Scale for, 50, 51f, 62–63
 obstructive sleep apnea as cause of, 50–51, 74
Exercise, for obstructive sleep apnea, 72
Exome sequencing, 115, 115t
Exploding head syndrome, 20, 199
Extraoral examination, 31, 32f
F
Facial growth and development, 44–45
Faciomanibular myoclonus, 17, 19
Fatal familial insomnia, 14
Fatigue
 obstructive sleep apnea as cause of, 50, 62b
 poor sleep and, 3
 sleepiness versus, 63
Fatigue Severity Scale, 62b, 63
Feeding behaviors, sleep-wake cycle and, 3
Fibromyalgia, 20, 24
Fight-or-flight state, 5
Flip-flop switch model, 11, 11f
Free radicals, 14
Functional pain, 189–190
G
Gabapentin, 184–185, 203
Gabapentinois, 184–185
Gastroenterologists, 23
Gastroesophageal reflux disease, 17–18, 132–133
Genioglossus muscle, 39f, 46–47, 84, 96
Geniohyoid advancement, 94
Genome-wide association studies, 113t, 115
Genome-wide linkage studies, 113t, 114
Giant cell arteritis, 173
Gingival inflammation, 56
Glial cells, 13
Glossary of Prosthodontic Terms, 120, 120t
Groaning, 18
Grunting, 18
Gurgling sounds, 18

H

Headaches
cluster, 171, 172t, 192, 195t, 197–198
exploding head syndrome, 20, 199
herpes zoster and, 199
hypnic, 20, 192, 195b, 198
medication overuse, 196
migraine. See Migraine headaches.
morning, 198
orofacial pain and, 192
sleep bruxism and, 133
sudden, novel, and intense, 198–199
tension-type, 20, 192, 195b, 197
in traumatic brain injury, 198
types of, 20, 194

Head-forward posture, 48

Health
oral, 88
sleep and, 6–7
Health-related quality of life, 50–51
Heartburn. See Gastroesophageal reflux
disease.
Hemicrania, 171, 172t
Heritability studies, 113t
Herpes zoster, 170, 199
High-flow nasal cannulae, 79, 80t
High loop gain, 41f, 42
High-sensitivity C-reactive protein, 57
High throughput facial phenotyping, 110
Homeostatic process, 3
Home sleep apnea test, 72, 79
Horton headache, 171
HTRA2 gene, 148–149
Hyperalgiesia, 189
Hyperalgesic priming, 189
Hypercapnia, 35
Hypersalivation, 18
Hypersomnia, 16b
Hypertension, 52, 52f
Hypnic headache, 20, 192, 195b
Hypocretin, 201
Hypoglossal nerve stimulation, for obstructive sleep apnea, 74
Hypopnea, 15, 150f. See also Sleep apnea-hypopnea.
Hypothalamus, 199
Hypothalamus-pituitary-adrenal axis, 178–180
Hypotonia, 4
Hypoventilation
hypercapnia associated with, 35
sleep-related, 37–38, 38f
Hypoxia, 52, 54, 56
Hypoxia inducible factor 1 alpha, 114

I

Idiopathic orofacial pain, 173
Imagery training, 213t
Imaging. See also specific modality.
 incidental findings on, 71
obstructive sleep apnea evaluations, 66–71, 67t–68t, 69f
types of, 31
upper airway, 66–70, 67t–68t
Implants, 153f, 154
Inadequate sleep, 7
Infants, sleep-wake patterns in, 6
Inflammatory bowel diseases, 184
Inflammatory pain, 189
Infliximab, 184
Informed consent, 33
Insomnia
characteristics of, 20
chronic, 210
cognitive behavioral therapy for, 183–184, 196–197, 212–214, 213t
definition of, 16b, 131
management of, 159, 184
medical history findings, 23b
migraine headaches as cause of, 194
nonpharmacologic management of, 210–214
pharmacologic approaches for, 184
screening for, 211
sleep bruxism and, 131
sleep hygiene education for, 211, 212b, 213t
Insomnia Severity Index, 195, 211
Interleukin-1, 179
Interleukin-1ß, 56
Interleukin-6, 57, 179–180, 183
Interleukin-33, 57
Interstitial hypoxia, 52
International Association for the Study of Pain, 175
International Bruxism Consensus Group, 120
International Classification of Headache Disorder, 198
International Classification of Sleep Disorders, 119
International Classification of Sleep Disorders 3, 15, 16b, 24, 195b
International Sleep Genetic Epidemiology Consortium, 114
Intraoral examination, 31, 32f

J

Jaw bracing, 120
Jaw muscle tone, 138
Jaw thrust, 100
Jaw thrusting, 120
Jet lag, 6

K

K-complexes, 13
L

Laryngospasm, sleep-related, 18
Laterodorsal tegmental nuclei, 10f
Light sleep, 4
Limited-channel sleep studies, for obstructive sleep apnea, 64
Lower airway, mouth breathing effects on, 48
Lower airway resistance, 82
Lung volume, 48

M

Machine learning, 108, 109t, 111, 131
Magnetic resonance imaging, for obstructive sleep apnea, 67t, 68, 69f, 70
Mallampati classification, 61
Mandibular advancement devices. See also Oral appliance/oral appliance therapy. adjustment of, 90
clinical outcomes of, 87–88
clinical protocol for, 88–90
combination therapy with, 90–91
continuous positive airway pressure and, 88, 91
dental assessment for, 89–90
dual-block, 90
factors associated with, 89, 90b
follow-up for, 90
hypertension reductions using, 52
limitations of, 88
mechanism of action, 87
monoblock, 90
morning headache managed with, 198
multidisciplinary approach to, 88
obstructive sleep apnea treated with, 58f, 74, 79–81, 80t, 87–91, 88b–89b, 97
periodontitis as contraindication for, 58
predictors of success for, 89, 90b
selection of, 90
side effects of, 88
uvulopalatopharyngoplasty and, 90
Mandibular growth and development, 44
Masseter muscle hypofunction, 47
Masticatory function, mouth breathing effects on, 47
Maxillofacial growth, 46
McGill oximetry scoring system, 79
Medical conditions, 16b
Medical history
elements of, 23b
screening uses of, 29
Medication overuse headache, 196
Melanopsin, 4
Melatonin, 180, 185, 196, 203
Meningitis, 198–199
Metabolic disorders, 52–53
Metabolic syndrome, 52, 52f
Metabolomics, 115
Microarousals, 138–140, 146
Migraine headaches
characteristics of, 172t
chronic, 194
classification of, 194, 195b
description of, 20, 171, 192
insomnia associated with, 194–196
management of, 196–197
melatonin for, 196
pathophysiology of, 196
prevalence of, 171
sleep assessments in patients with,
195–196
sleep disturbances caused by, 194–196
sleep quality affected by, 192
treatment of, 196–197
with aura, 171, 194, 195b
without aura, 194, 195b
Miniature self-contained EMG detector and
analyzer, 126
Mirtazapine, 203
Mixed episode, of rhythmic masticatory
muscle activity, 135
Modafinil, 74
Monoamines, 10
Monoblock mandibular advancement
devices, 90
Muntenukast, 80t
Morninng headache, 133, 198
Motor vehicle accidents, 51
Mouth breathing
case presentation of, 84–85, 85f
causes of, 82
in children, 82
lower airway effects of, 48
masticatory function affected by, 47
maxillofacial growth affected by, 46
muscle rehabilitation for, 84
to nasal breathing, 84
nasal reflexes affected by, 47–48
nasomaxillary lengthening for, 83, 84f
nasomaxillary widening for, 82–83, 83f
oral cavity effects of, 45, 46f
perpetuation of dysfunction caused by,
47f, 48
screening of, 82
upper airway cyclic dysfunction of, 46, 47f
Movement disorders
periodic limb, 19, 130–131
sleep-related, 19b
Mucositis, 189
Müller maneuver, 68, 70
Muscle relaxants, 203
Myalgia, 171t
Myofascial pain, 171t
N
Nasal breathing, mouth breathing to, 84
Nasal obstruction, 94, 164
Nasal reflexes, 47–48
Nasal ventilation reflex, 47
Nasomaxillary lengthening, 83, 84f
Nasomaxillary widening, 82–83, 83f
Nasopharyngoscopy, for obstructive sleep
apnea, 68, 68t, 70
Neuritis, 170
Neurologists, 23
Neuropathic orofacial pain, 170, 189
Neurovascular orofacial pain, 171, 172t
Nightmares, 18–19
N-methyl-D-aspartate receptors, 177, 189
Nociception, 175–176
Nociceptive pain, 188–189
Nociceptors, 175, 188–189
Nociplastic pain, 190
Nocturnal frontal lobe epilepsy, 132
Nonalcoholic fatty liver disease, 52
Nonbenzodiazepine receptor agonists, 204
Non-REM sleep
blood flow in, 14
definition of, 9
description of, 4
electroencephalogram findings, 12
opioid effects on, 206
sleep terrors in, 18
stages of, 12f
Nonsteroidal anti-inflammatory drugs, 180,
184, 202
Norepinephrine, 138, 201
NoSAS score, 16, 17b
Nucleus tractus solitarius, 136
Obesity
central, 61
obstructive sleep apnea and, 36, 40, 61, 72,
79, 80t, 115
sleep-disordered breathing associated
with, 48
upper airway affected by, 101
weight loss for, 72, 80t
Obesity-hypoventilation syndrome, 16, 37,
73, 94
Obstructive sleep apnea. See also Sleep
apnea.
acoustic reflection pharyngometry of,
68t, 70
airway features associated with, 61
anatomical causes of, 16, 40
anesthesia risks in patients with, 100–103
apnea-hypopnea index for, 36–37, 64
atrial fibrillation and, 61
attention affected by, 50
biomarkers of, 113
cancer and, 54
cardiovascular diseases associated with,
52f, 53
causes of, 16, 40–42, 41f
cephalometric analysis of, 66, 67t, 70
diagnosis of, 77b, 77–79
delay of, 36, 79, 80t
with diabetes, 77
in children
diagnosis of, 77b, 77–79
predisposing conditions, 77
sleep apnea, 100–103
sleep-disordered breathing associated
with, 36, 40, 61, 72, 79, 80t, 115
clinical prediction models for, 78t
comorbidities, 24, 20f, 61
computed tomography of, 66–68, 67t
consultation about, 33
craniofacial features associated with, 61, 115
definition of, 36
dentist’s role in management of, 30f
depression associated with, 50
description of, 15
diabetes mellitus associated with, 52, 52f
diagnosis of
in adults, 36–37, 60–64, 72
ambulatory overnight oximetry for, 211
in children, 77–79
polysomnography for, 36f, 63f, 63–64,
78–79, 211
preoperative, 101–102
questionnaires for, 62, 62–63, 78, 101, 211
excessive daytime sleepiness caused by,
50–51, 74
exercise for, 72
fatigue associated with, 50, 62b
gastroesophageal reflux disease and, 133
genetics of, 115, 113–116, 115f
heterogeneity of, 107
home sleep apnea test for, 72, 79
hypertension caused by, 52, 52f
imaging modalities for, 66–71, 67t–68t, 69f
limited-channel sleep studies for, 64
long-term consequences of, 50–54, 50f–53f
magnetic resonance imaging of, 67t, 68,
69f, 70
metabolic disorders caused by, 52–53
metabolic syndrome associated with, 52,
52f
morning headache associated with, 198
motor vehicle accident risks, 51
nasopharyngoscopy of, 68, 68t, 70
nonanatomical causes of, 40–42, 41f
obesity as risk factor for, 36, 40, 61, 72, 79,
80t, 115
pathophysiology of, 39f, 39–42, 41f, 100
patient education regarding, 33
periodontal diseases and, 55–59, 56b,
57f–58f
periodontitis and, 54, 58f
perioperative management of, 102b
perioperative risk, 101
phenotypes/phenotyping of, 108f, 114–115
physical examination for, 60–61
postoperative nursing environment for, 103
precision medicine for, 107–111
preoperative diagnosis of, 101–102
prevalence of, 96
quality of life affected by, 50–51
questionnaires for, 62t, 62–63, 78, 101, 211
respiratory arousal threshold in, 42
risk factors for, 16, 36, 40, 61, 107, 115, 196
screening for, 16, 29–34, 30f–32f, 211
severity of, 64, 72, 78
signs and symptoms of
in adults, 36, 60, 61b, 61t
in children, 77b, 78t
sleep bruxism and, 129–130
sleep-related hypoventilation and, 37
sleep-related symptoms of, 60
snoring associated with, 61, 77
temporomandibular disorder risks
associated with, 170
tests for, 63f, 63–64
tooth loss effects on, 56

treatment/management of, 25
adenotonsillectomy, 79, 80t
American Academy of Sleep Medicine
recommendations, 72
anti-inflammatory medications, 79, 80t
bariatric surgery, 74
in children, 79–81, 80t
continuous positive airway pressure, 72–73, 80t, 96, 110
corticosteroids, 79, 80t
cranial nerve stimulation, 94
craniofacial morphology correction, 79, 80t
decision-making, 72
dentist’s role in, 32
drug-induced sleep endoscopy in, 68, 70, 96
emerging concepts in, 74–75
first-line, 72b, 72–73
geniotubercolce advancement, 94
goals, 37
guidelines for, 72, 73f
hypoglossal nerve stimulation, 74
mandibular advancement devices, 58f, 74, 87–91, 88b–89b, 97
multidisciplinary approach to, 32–33
oral appliance therapy, 74–75
oral myofunctional therapy, 104–105
orthodontics, 79, 80t
orthopedic mandibular advancement, 79–81, 80t
pharmacologic, 74–75, 96
positional therapy, 74–75, 97f, 97–98
positive airway pressure, 73, 75, 79, 80t, 102
precision medicine, 107–111
ribonucleic acid signatures used in, 111
surgery, 74, 92–96, 93t
tongue-retaining devices, 87
tracheostomy, 94
transcranial magnetic stimulation, 97–98
upper airway imaging in, 70
upper airway stimulation, 97–98, 98f
upper airway surgery, 74, 92–96, 93t
uvulopatlabiphenopharyngoplasty, 70, 74, 90, 94
weight loss, 72
ultrasonography of, 67t, 68
upper airway in, 70
upper airway resistance syndrome, 36
ventilatory control in, 42, 115
in wakefulness, 60
Occipital headache, 171
Occusion
mouth breathing effects on, 45
sleep bruxism-related trauma to, 153–154
Olanzapine, 203
Oximcs approaches, 108
Opioid(s)
adiction to, 206
adverse effects of, 205
definition of, 205
dentists’ role in crisis involving, 207–208
long-term use of, 205
misuse of, 205–206
opioid pain treated with, 203–208
problematic use of, 207
recommendations for, 208
screening of patients, 207–208
sleep disruption caused by, 184–185, 206
tension-type headache managed with, 197
Opioid Compliance Checklist, 207
Opioidergic system, 178–179
Opioid-induced hyperalgesia, 205, 207
Opioid receptors, 204
Opioid Risk Tool, 207
Opioid use disorder, 206, 206f
Oral appliance/oral appliance therapy. See also Mandibular advancement devices.
contraindications for, 33
description of, 24
fabrication of, 33
indications for, 33
informed consent for, 33
monitoring of patients with, 33–34
obstructive sleep apnea treated with,
74–75, 89t
side effects of, 34
sleep bruxism treated with, 159
Oral cavity, mouth breathing effects on, 45, 46f
Oral health, 58
Oral myofunctional therapy, 84, 104–105
Orexin, 11, 201
Orofacial pain acute. See Acute pain.
chronic. See Chronic pain.
cognitive behavioral therapy for, 214
definition of, 169
description of, 32, 120
electromyography activity, 191
functional, 189–190
headaches associated with, 192
inflammatory, 189
mechanisms of, 188–190
modulatory systems for, 177
nervous system plasticity involved in,
176–177
nociceptive, 188–189
opioids for, 203–208
prevalence of, 210
sleep deficiency and, interactions between
analgescis for, 202, 202t
antidepressants for, 202t, 202–203
antiepileptics, 203
antipsychotics for, 203
antisasmpmodics for, 203
behavioral approaches for, 183–184
causality of, 187–192
mechanisms of, 178–181
pharmacologic management of, 201–204
sleep disturbances and, 187–192
sleep-disturbing medications for, 185
tempomandibular disorders, 170
types of, 188f
Orofacial pain disorders
characteristics of, 172t
classification of, 169–173
definition of, 169
idiopathic, 173
neuropathic, 170, 189
neurovascular, 171, 172t
Orofacial Pain Guidelines, 119
Orthodontic treatments
for obstructive sleep apnea, 79, 80t
for sleep bruxism, 159
Orthopedic mandibular advancement, 79–81, 80t
OSA-18, 78

P

Pain
chronic, 23
definition of, 169
endocannabinoinds in modulation of, 181
myofascial, 171t
orofacial. See Orofacial pain.
postoperative, 184–185
Pain modulatory systems, 177
Paradoxical sleep, 4, 9
Parafunetion
definition of, 119
waking oral, 142–143, 144t, 153
Parasomnias
definition of, 16b
types of, 17
Paroxysmal hemicrania, 172t
Index

Passive theory, 11
Pedunculopontine tegmental nuclei, 10f
Periodic body movements, 4
Periodic limb movement disorder
description of, 19
sleep bruxism and, 130–131
Periodic limb movement index, 131
Periodic limb movements, 6
Periodontal diseases
definition of, 55
description of, 32
obstructive sleep apnea and, 55–59, 56b, 57f–58f
Periodontitis, obstructive sleep apnea and,
55, 58f
Peripheral nociceptors, 175
Peripheral sensitization, 176, 189
Persistent dental/veolar pain, 172t, 173
Persistent idiopathic facial pain, 172t, 173, 191
Phantom tooth pain, 173
Pharynx, 46
Phasic episode, of rhythmic masticatory muscle activity, 135
Pittsburgh Sleep Quality Index, 211
P4 medicine, 108, 111
Polysomnography
central sleep apnea findings, 36f
obstructive sleep apnea diagnosis using,
36f, 63f, 63–64, 78–79, 152, 211
overnight, 78
poor sleep quality findings, 5
rhythmic masticatory muscle activity, 135
sleep-related hypoventilation findings,
38, 38f
temporomandibular disorders evaluation,
210–211
Poor sleep
fatigue and, 3
headaches as cause of, 192, 194
migraine headaches as cause of, 194
polysomnographic findings, 5
Positional sleep apnea, 17, 74–75
Positional therapy
description of, 24
obstructive sleep apnea treated with,
74–75, 97f, 97–98
Positive airway pressure
bi-level, 73
cardiovascular disease benefits of, 53
continuous
data monitoring capabilities of, 110
mandibular advancement devices and,
88, 91
obstructive sleep apnea treated with,
72–73, 80t, 96, 110
hypertension reductions using, 52
metabolic dysfunction and, 53
obstructive sleep apnea treated with, 73,
75, 79, 102
sleep-disordered breathing treated with,
51–53
Post-herpetic neuralgia, 170, 172t
Postoperative pain, 184–185
Post-traumatic trigeminal neuropathic pain,
170
Postural muscles, 4
Pramipexole, 203
Precision medicine, 107–111
Pregabalin, 184–185, 203
Process C, 4, 11
Process S, 3, 4f, 11
Pro-inflammatory cytokines, 179
Prostaglandins, 179–180
Prosthodontics, 120
Psychologists, 23
Psychiatrists, 23
Proteomics, 115t
Prostaglandins, 180
Pro-inflammatory cytokines, 179
Process S, 3, 4f, 11
fMRI findings of, 3
Psychologists, 23
Rapid mandibular expansion, 80t
Rapid maxillary expansion, 79, 82–83, 83f
Rapid palatal expansion, 165
REM. See Respiratory disturbances.
Relaxation training, 213t
Relay neurons, 10
REM behavior disorder
definition of, 17
description of, 19–20
sleep bruxism and, 132
tooth grinding associated with, 20
REM sleep
cellular activities during, 13–14
duration of, 3, 6, 9
electroencephalogram findings, 12
endocannabinoids in modulation of, 181
functions of, 6, 6b, 14
genesis of, 9–11
homeostasis of, 11
historical studies of, 9
inadequate, 7
measurements of, 31
neurobiology of, 9–14, 203
non-REM. See Non-REM sleep. paradoxical, 4, 9
regulation of, 11, 146
REM. See REM sleep.
services involved in, 9–11, 10f–11f
sleep bruxism and, 130–131
suckling and smacking sounds during, 18
violent behavior during, 133
Rheumatoid arthritis, 184, 189
Rhythmic masticatory muscle activity
definition of, 142
description of, 17, 127, 130–132
sleep bruxism. See Sleep bruxism—
rhythmic masticatory muscle activity.
Rheumatoid arthritis, 184, 189
Ribonucleic acid signatures, 111
Risk indicators, 121, 122t
S
Screening and Opioid Assessment for
Patients with Pain-Revised, 207
Screenings
obstructive sleep apnea, 29–34, 30f–32f, 211
sleep-disordered breathing, 29–34, 30f–32f
Second-order neurons, 189
Sedatives, 16, 102
Selective serotonin reuptake inhibitors, 160
Sensitization, 176–177, 189
Sensory reflexes, 47
Sertotoninergic system, 179
Serotonin, 150, 196, 201
Serotonin and noradrenaline reuptake
inhibitors, 202–203
Serotonin receptor 2A, 148–149
Short-lasting unilateral neuralgiform
headache attacks with conjunctival injection and tearing, 171, 172t
Short-lasting unilateral neuralgiform
headache attacks with cranial autonomic symptoms, 171, 172t
Sleep
abnormal breathing during, 45
behavioral characteristics of, 9
cellular activities during, 13–14
definition of, 3, 9, 14, 138
duration of, 3, 6, 9
electrophysiological correlates of, 12–13
endocannabinoids in modulation of, 181
functions of, 6, 6b, 14
historical studies of, 9
homeostasis of, 11
inadequate, 7
measurements of, 31
neurobiology of, 9–14, 203
non-REM. See Non-REM sleep. paradoxical, 4, 9
regulation of, 11, 146
REM. See REM sleep.
sic structures involved in, 9–11, 10f–11f
suckling and smacking sounds during, 18
violent behavior during, 133
Screener and Opioid Assessment for
Patients with Pain-Revised, 207
Sclerotherapy, 91
Sleep.
See Non-REM sleep.
Sedatives, 16, 102
Selective serotonin reuptake inhibitors, 160
Sensitization, 176–177, 189
Sensory reflexes, 47
Sertotoninergic system, 179
Serotonin, 150, 196, 201
Serotonin and noradrenaline reuptake
inhibitors, 202–203
Serotonin receptor 2A, 148–149
Short-lasting unilateral neuralgiform
headache attacks with conjunctival injection and tearing, 171, 172t
Short-lasting unilateral neuralgiform
headache attacks with cranial autonomic symptoms, 171, 172t
Sleep
abnormal breathing during, 45
behavioral characteristics of, 9
cellular activities during, 13–14
definition of, 3, 9, 14, 138
duration of, 3, 6, 9
electrophysiological correlates of, 12–13
endocannabinoids in modulation of, 181
functions of, 6, 6b, 14
genesis of, 9–11
health and, 6–7
historical studies of, 9
homeostasis of, 11
inadequate, 7
measurements of, 31
neurobiology of, 9–14, 203
one-REM. See Non-REM sleep. paradoxical, 4, 9
regulation of, 11, 146
REM. See REM sleep.
sic structures involved in, 9–11, 10f–11f
suckling and smacking sounds during, 18
violent behavior during, 133
Sleep apnea
central. See Central sleep apnea.
in children, 16
description of, 6
economic costs of, 7
obstructive. See Obstructive sleep apnea.
risks associated with, 16
screening for, 211
severity of, 15–16
Sleep apnea-hypopnea
description of, 15–17
gastroesophageal reflux disease associated with, 17
Sleep arousals, 5–6, 130
Sleep bruxism
in adolescents, 162–165, 163t
affective disturbances associated with, 143
catastrophic structural failures caused by, 153, 153f
characteristics of, 119, 144t
central sleep apnea
in children, 162–165, 163t
comorbidities, 24, 129–133
definition of, 17, 119–120, 120t, 123–124, 142, 162
dentition effects of, 152–154, 153f
diagnosis of
ambulatory monitoring, 164
in children and adolescents, 164
clinical examination, 125b, 125–126, 148
electroencephalography, 163
inaccurate, 152
interview with patient, 164
intraoral devices, 124b, 126
methods used in, 125b
polysomnography, 126–127, 127b, 152
questionnaires for, 124–125, 125b, 148
recording systems, 124b, 126, 127b
sleep laboratory monitoring, 164
differential diagnosis of, 17
in Down syndrome, 162
epidemiology of, 120–121, 162
epigeneics of, 150
epilepsy and, 132
etiology of, 121–123, 122t, 143
familial aggregation of, 148, 163
gastroesophageal reflux disease and, 132–133
genesis of, 136, 136f–137f, 140
genetics of, 146f–147t, 146–150, 149t, 163
heritability of, 146, 146f–147t
implants affected by, 153f, 154
insomnia and, 131
load created by, 152–153
management of
approaches used in, 158t
behavioral, 158, 158–159
biofeedback, 158, 158t
botulinum toxin, 158t, 159–160
in children and adolescents, 164–165
clonazepam, 158t, 159–160
dental interventions, 158t, 159
electrical stimuli, 160
“multiple P” strategy, 157, 157f
occlusal/oral appliance for, 154–155, 158t
orthodontics, 159
pharmacologic, 158t, 159–160
morning headache and, 133
neurotransmitters involved in, 150
obstructive sleep apnea and, 129–130
occlusal trauma caused by, 153–154
pathophysiology of, 162–163
pediatric, 162–165, 163t
periodic limb movement disorder and, 130–131
prevalence of, 120, 121t, 142
psychosocial factors related to, 142–143
REM behavior disorder and, 132
restless leg syndrome and, 130–131
risk factors for, 17, 157, 163t, 163–164
sleep bruxism-rhythmic masticatory muscle activity.
Sleep bruxism-rhythmic masticatory muscle activity.
risk factors for, 17, 157, 163t, 163–164
risk indicators for, 121, 123
severity of, 164
sleep-disordered breathing and, 164
stress and, 162
tooth affected by, 152–154, 153f
temporomandibular disorders and, 190–191, 198
tooth cracks and fracture caused by, 154
tooth wear caused by, 125, 154, 157
twin studies of, 148
waking oral parafunction and, 143–144
wear facets caused by, 153f
Sleep deprivation
adaptation to, 6
definition of, 6
health effects of, 7
immune system affected by, 14
neurogenesis affected by, 14
Sleep diaries, 195
Sleep-disordered breathing
causes of, 45
in children, 82
continuum of, 96
dentofacial morphology associated with, 48–49
guidelines/protocols for, 29–34
management of
dentist’s role in, 32
multidisciplinary approach to, 32–33
myofunctional therapy, 84
markers of, 45
medical history findings, 23b
obesity and, 48
obstructive sleep apnea. See Obstructive sleep apnea.
positive airway pressure therapy for, 51–52
screening for, 29–34, 30f–32f
sleep bruxism and, 122, 164
temporomandibular disorders and, 191
Sleep disorders
costs of, 7
medical conditions associated with, 29, 31
in migraine headaches, 195–196
orofacial pain and, 187–192
periodontal diseases associated with, 55
screening for, 210–211
Sleep efficiency, 5
Sleep fragmentation
cyclic alternating pattern associated with, 6
in obstructive sleep apnea, 52
sleep debt caused by, 6
Sleep hygiene education, 211, 212b, 213t
Sleep hypopnea, 6
Sleepiness, 17, 50–51, 62–63
Sleep medicine. See Dental sleep medicine.
Sleep oscillations, 13–14
Sleep physicians, 22
Sleep pressure, 3
Sleep quality, 3
Sleep recordings
description of, 5–6
sleep bruxism-rhythmic masticatory muscle activity recognized from, 135
Sleep-related breathing disorders
centra sleep apnea. See Central sleep apnea.
classification of, 32b
continuous positive airway pressure for, 88
morbidty and mortality risks, 34
obstructive sleep apnea. See Obstructive sleep apnea.
sleep-related hyperventilation, 37–38
types of, 16–17
Index

Sleep-related breathing events, 5, 16b
Sleep-related disorders, 133
Sleep-related hypoventilation, 37–38, 38f
Sleep-related laryngospasm, 18
Sleep-related movement disorders
definition of, 16b
medical history findings, 23b
sleep complaints associated with, 24b
types of, 16b
Sleep Research Society, 183
Sleep restriction, 213t
Sleep stages
description of, 13
dreaming in, 4
electroencephalogram patterns, 13
N1, 4, 5f, 13
N2, 4, 5f, 13
N3, 4, 5f, 13
N4, 13
Sleep talking, 18, 133
Sleep terrors, 18
Sleep-wake cycle
as homeostatic process, 3
cost of, 201
description of, 3
developmental changes in, 6
diagram of, 5f
feeding behaviors and, 3
24-hour, 3–4
Sleep walking, 133
Slow-wave sleep
description of, 9
description of, 3
monoamines in, 10
Snoring
description of, 15
management of
dentist’s role in, 30f
first-line options, 33
in obstructive sleep apnea, 61t, 77
Social history, 23b
Soluble intercellular adhesion molecule-1, 56
Somniloquy, 18
Spatial modulation of magnetization, 68
Sterol regulatory element binding protein, 114
Stimulus control therapy, 213t
STOP-BANG questionnaire, 16, 62, 78f,
101–102, 195, 211
Stress, 162
Stridor, 18
Supervised machine learning, 108, 109t
Suprachiasmatic nucleus, 4, 11
Surgery, upper airway
complications of, 94–95
obstructive sleep apnea treated with, 74,
92–95, 93t
Suvorexant, 203
Swallowing abnormalities, 18, 20

T
Tagged magnetic resonance imaging, 70
Taxonomy, 169
Teeth
cracks in, 154
fracture of, 154
grinding of, 17, 20, 120, 135. See also Sleep
bruxism.
loss of, obstructive sleep apnea and, 56
sleep bruxism effects on, 152–154, 153f
tapping of, 17–19
wear of, 125, 154, 157
Temporal arteritis, 173
Temporomandibular disorders
classification of, 170
diagnostic criteria for, 171t
Incidence of, 170
obstructive sleep apnea and, 24, 170
pain associated with, 170
sleep bruxism and, 190–191, 198
sleep-disordered breathing and, 191
studies of, 210–211
waking oral parafunction and, 143
Tension-type headaches, 20, 192, 195b, 197
Tensor palatini muscle, 47
Tetrahydrocannabinol, 181
Thalamic nuclei, 10
Thalamocortical circuit, 13
Thalamocortical neurons, 10
Tocilizumab, 184
Tongue-retaining devices, 87
Tonic episode, of rhythmic masticatory
muscle activity, 135
Tonsils, 44
Tooth. See Teeth.
Toothache, 191
Tracheostomy, 94
Transcranial magnetic stimulation, 97–98
Transcriptomics, 115
Triptans, 197
Tryptophan, 138
Tuberomammillary nucleus, 10f
Tumor necrosis factor—α, 57, 114
24-hour sleep-wake cycle, 3–4

U
Unsupervised machine learning, 108, 109t,
111
Upper airway
in adolescents, 44
anatomy of, 39f, 39–40
critical closing pressure of, 40
development of, 44
functions of, 39
imaging of, 66–70, 67t–68t
muscles of
anatomy of, 40–42, 41f
anesthesia-related relaxation of, 100
obesity effects on, 101
obstruction of, 37f
in obstructive sleep apnea, 70
soft tissues of, 70
tooth loss effects on, 56
Upper airway resistance, 82
Upper airway resistance syndrome, 36
Upper airway stimulation, 97–98, 98f
Upper airway surgery, for obstructive sleep
apnea, 74, 92–95, 93t
Uvulopalatopharyngoplasty, for obstructive
sleep apnea, 70, 74, 90, 94

V
Vedolizumab, 184
Venlafaxine, 203
Ventilatory control, 42, 115
Ventrolateral preoptic nucleus, 11, 11f
Vertex waves, 13

W
Wake after sleep onset, 5
Wakefulness
chewing during, 136
cortical activation during, 10
duration of, 4
electroencephalogram recordings, 12
movement disorders during, 19b
neurobiology of, 201
obstructive sleep apnea symptoms during,
60
REM sleep versus, 13
Wake-sleep cycle. See Sleep-wake cycle.
Waking
regulation of, 146
stages of, 12f
Waking oral parafunction, 142–143, 144t, 153
Whole genome sequencing, 115, 115t
Widespread pain. See Fibromyalgia.

Z
Zopiclone, 184