Treatment of TMDs:
Bridging the Gap Between Advances in Research and Clinical Patient Management
Treatment of TMDs: Bridging the Gap Between Advances in Research and Clinical Patient Management

Edited by

Charles S. Greene, DDS
Clinical Professor
Department of Orthodontics
College of Dentistry
University of Illinois
Chicago, Illinois

Daniel M. Laskin, DDS, MS
Professor and Chairman Emeritus
Department of Oral and Maxillofacial Surgery
Schools of Dentistry and Medicine
Virginia Commonwealth University
Richmond, Virginia

Quintessence Publishing Co, Inc
This book is dedicated to the memory of Dr Laszlo Schwartz, who founded the first academic temporomandibular joint (TMJ) center in the United States at Columbia University in 1949. At that time, the generally accepted viewpoint was that abnormalities in dental and jaw relationships were the major factors in the development of disorders related to the TMJ. Therefore, procedures such as occlusal adjustment or major restorative dentistry were the preferred therapies. All this eventually changed as the result of his pioneering research and his leadership. His textbook, *Disorders of the Temporomandibular Joint*, published in 1959, represented a major paradigm shift from a mechanical to a biopsychosocial approach to their treatment. Dr Schwartz’s work not only had a profound influence on the future direction of research in the field, but it has also led to improved care of patients with temporomandibular disorders.
Section I. Understanding Regional and Widespread Pain Phenomena

1 Sensory Mechanisms of Orofacial Pain
Ronald Dubner, Ke Ren, and Barry J. Sessle

2 Pathophysiology of Masticatory Myofascial Pain
Rafael Benoliel, Peter Svensson, and Eli Eliav

3 Pathophysiology of Intracapsular Inflammation and Degeneration
Rüdiger Emshoff

4 Comorbid Conditions: How They Affect Orofacial Pain
Ana Velly, Petra Schweinhardt, and James Fricton

5 How Sleep and Pain Affect Each Other
Guido Macaluso, Maria C. Carra, and Gilles J. Lavigne

Section II. Assessing Susceptibility to Pain Development and Chronicity

6 Genetic Determinants of Complex Orofacial Pain Conditions
Christian S. Stohler

7 Quantitative Sensory Testing of Pain Responsiveness
Peter Svensson, Eli Eliav, and Rafael Benoliel

8 Predicting Treatment Responsiveness: Somatic and Psychologic Factors
Richard Ohrbach and Thomas List

Section III. Biomechanics of TMJ Function

9 Biomechanics and Mechanobiology of the TMJ
Sandro Palla and Luigi M. Gallo

10 Finite Element Analysis of the TMJ
Jan Harm Koolstra

11 Lubrication of the TMJ
Yehuda Zadik and Dorrit W. Nitzan
Section IV. Diagnostic Technology

12 Imaging of the TMJ and Associated Structures 133
 David C. Hatcher

13 Brain Imaging of Pain Phenomena 141
 Geoffrey E. Gerstner, Eric Ichesco, and Tobias Schmidt-Wilcke

14 Synovial Fluid Analysis and Biomarkers of TMJ Disease 155
 Regina Landesberg and Sunil Wadhwa

Section V. Therapeutic Advances

15 Developmental and Evolutionary Perspectives on TMJ Tissue Engineering 167
 David A. Reed, Robert P. Scapino, Callum F. Ross, Di Chen, and Thomas G. H. Diekwisch

16 Injectable Compounds to Treat TMJ Pain and Degenerative Joint Disease 177
 Songsong Zhu and Jing Hu

17 Pharmacologic Management of TMD Pain 185
 Stephan A. Schug, Stefan Lauer, and Robert E. Delcanho

Appendix of Abbreviations 195
Index 197
I am very pleased to write a foreword for this textbook. My first reason for this is based on the major shift in the concepts and protocols for managing temporomandibular disorders (TMDs) and orofacial pain that I have seen in my professional career. These changes have occurred as a result of the new knowledge we have gained that has enhanced our understanding of these conditions, and the precise goal of this textbook is to bring this type of information to the clinician. Another reason that I am pleased to write this foreword is because of my admiration for both Dr Greene and Dr Laskin. Very early in the 1970s, these two individuals boldly questioned universally accepted therapies, and their efforts began a professional movement that demanded more evidence to support our TMD treatments. Acquiring such evidence is essential in offering the best care to our patients. This textbook provides the clinician with an understanding of the basic science and clinical research that supports the use of our current therapies while also pointing the way toward future treatment possibilities. These principles are fundamental to good health care.

Many years ago, a link was made by the dental profession between the occlusal relationships of the teeth and orofacial pain. Early on it was observed clinically that in some patients changes in the occlusal condition seemed to be associated with a reduction in pain. Unfortunately, at that time we had very little understanding or appreciation for the scientific method that could be used to better define this association. Instead, we made some assumptions regarding connections between what we knew (occlusion) and what we really did not know well (the pathophysiology of pain). Our early mentors taught by authority and not necessarily by reason or evidence. This seemed to fit nicely with the mechanistic model that we dentists understood and used in managing most of our patients’ common dental problems. However, it eventually became obvious that there were significant inconsistencies in achieving success with our orofacial pain patients. We then began to ask more questions that would help us better understand these patients’ problems.

By the late 1980s, the profession began to appreciate and embrace the concept of basing our treatment decisions on scientific studies and not just assuming that our mentors were correct. This stirred up much controversy, not only because it discredited some mentors but also because it forced us to give up concepts that we had accepted that had no scientific merit. We learned, as we have continued to learn, that it is difficult to change belief models.

By the late 1990s, the scientific method became more embraced by the profession and we began to hear the term evidence-based medicine. Significant research funding became available, especially for the investigation of pain. However, much of this research was in the basic science domain, leaving the clinician with little connection to the findings. Realizing the need to link these research findings to the practice of medicine and dentistry, the concept of “translational science” became a standard goal. Translational science is exactly what this text offers. It presents a state-of-the-art description of the known biology of TMDs and orofacial pain, as well as developing concepts, in a format that can be translated into the clinical management of patients.

Another important feature that was uncovered by basic science research was that pain is pain. Although there are definitely some unique features of the masticatory structures, we have learned that the mechanism by which nociceptive impulses are initiated, transmitted, and perceived as pain is not unique to the masticatory system but in fact common to all other areas of the body. We have also learned to appreciate that dentistry and medicine blend together in the area of orofacial pain. The mechanistic model first embraced by the dental profession can no longer explain the pain our patients experience, especially as it becomes chronic. In fact, most chronic orofacial pain conditions are very similar to other chronic pain conditions managed in the medical field. Moreover, many of the chronic pain patients have two or more pain conditions simultaneously. The evidence-based research in orofacial pain has moved us away from teeth to the vast field of understanding human pain and suffering.

Although we have advanced greatly in the field of TMDs and orofacial pain, our knowledge is still incomplete. Yet every day clinicians meet patients who ask for help with their pain and suffering. We must take the best scientific evidence available and determine the most appropriate treatment for each patient. This is not always an easy undertaking, yet it is the most critical task that needs to be accomplished for the patient. This is the concept behind “best practice.” This text will help clinicians make many of these very important decisions for their patients. The most essential factor to consider is to always select the most conservative approach and to do no harm. The human being is a remarkably complex organism with a great ability to adapt and recover. The most conservative approach to therapy is often adequate to enhance this recovery.

I commend Drs Greene and Laskin for their efforts in assembling this fine text. I also applaud the contributing authors, many of whom have dedicated their lives’ work toward gaining a better understanding of why and how our patients suffer and what can be done to help them. The true value of this book will be measured not only by the number of clinicians who read it but also by how they use this information to reduce the pain and suffering of their patients. This is the ultimate responsibility of the health care provider.

Jeffrey P. Okeson, DMD
Professor and Chair, Department of Oral Health Science
Provost’s Distinguished Service Professor
Director, Orofacial Pain Program
College of Dentistry, University of Kentucky
Lexington, Kentucky
The central theme of this book arises from a single question: What is happening in basic and clinical research today that likely will significantly impact the diagnosis and treatment of temporomandibular disorders (TMDs) in the near future? Clearly, the answer to this question must extend far beyond the traditional pain issues that have been the predominant focus of most recent research. The combination of new research tools with innovative experimental designs has produced a large body of information about musculoskeletal disorders, and much of this can be directly or indirectly applied to the temporomandibular joint (TMJ). However, many dental clinicians are unaware of this type of information because it is presented mainly in medical publications or nonclinical scientific journals. Thus, there is a significant information gap between many of the latest advances in the general field of musculoskeletal disease and their potential applications in the clinical management of patients with various TMDs. This is especially true in regard to the issues of acute versus chronic pain. It is the purpose of this book to help bridge this gap.

The book is divided into five sections, each containing numerous chapters that deal with varying aspects of the anatomy, biochemistry, neurophysiology, and psychology of the common TMDs. Chapters dealing with topics such as the biomechanics of normal and abnormal TMJ function, the complexities of TMJ and masticatory myofascial pain, diagnostic technology and markers of disease, pharmacologic management of TMDs, and tissue engineering of joint components provide a strong foundation for discussing other important issues. Each chapter discusses present knowledge in the particular field and how it may apply to the diagnosis and treatment of TMD patients. In addition, every chapter provides an overview of current new research in the field and its potential for changing future patient care. Included are such clinically relevant topics as the relation of abnormal joint function to joint pathology, the prediction of treatment responsiveness, how sleep disorders affect facial pain, and the role of comorbid conditions in pain response and management. Several chapters also deal with the evolving field of pharmacotherapeutics, including new analgesic drugs, drugs for managing neuropathic pain, and potential drugs for stopping or reversing degenerative joint disease. Because of the numerous technical terms used in this book, an appendix of abbreviations has been added.

We are fortunate to have as contributors to this book a group of international authors who are recognized as leading experts in their fields and who have contributed significantly to our current knowledge through their well-known research and publications. We wish to thank them for their time and effort in accepting the challenge of writing chapters with a focus on future clinical applications of their knowledge. Ultimately, we hope that the information they have offered in this book will provide the reader with a better understanding of the complexities of the various TMDs, which should help to make their management easier and more successful now as well as in the future.
contributors

Rafael Benoliel, BDS (Hons), LDS, RCS (Eng)
Professor
Department of Oral Medicine
Faculty of Dentistry
Hebrew University Hadassah
Jerusalem, Israel

Maria C. Carra, DDS, PhD
Postdoctoral Researcher
School of Dentistry
University of Parma
Parma, Italy

Di Chen, PhD
Professor and Chair
Department of Biochemistry
Rush University
Chicago, Illinois

Robert E. Delcanho, BDSc, MS
Clinical Associate Professor
Faculty of Medicine and Dentistry
University of Western Australia
Perth, Australia

Thomas G. H. Diekwisch, DDS, PhD(sc), PhD(phil)
Professor and Head
Allan G. Brodie Endowed Chair
Department of Oral Biology
College of Dentistry
University of Illinois
Chicago, Illinois

Ronald Dubner, DDS, PhD
Professor
Department of Neural and Pain Sciences
University of Maryland Dental School
Baltimore, Maryland

Eli Eliav, DMD, MSc, PhD
Professor and Chair
Department of Diagnostic Sciences
Director, Center for Temporomandibular Disorders and Orofacial Pain
Susan and Robert Carmel Endowed Chair in Algesiology
New Jersey Dental School
University of Medicine and Dentistry of New Jersey
Newark, New Jersey

Rüdiger Emshoff, Univ-Doz, Dr med Dr (H)
Associate Professor
University Clinic of Oral and Maxillofacial Surgery
Innsbruck Medical University
Innsbruck, Austria

James Fricton, DDS, MS
Professor
School of Dentistry
University of Minnesota
Minneapolis, Minnesota

Senior Research Investigator
HealthPartners Research Foundation
Bloomington, Minnesota

Luigi M. Gallo, Dr sc techn
Professor
Clinic of Masticatory Disorders, Removable Prosthodontics, Geriatric and Special Care Dentistry
Center of Dental Medicine
University of Zurich
Zurich, Switzerland

Geoffrey E. Gerstner, DDS, MS, PhD
Associate Professor
Department of Biologic and Materials Sciences
School of Dentistry
Department of Psychology
College of Literature, Sciences and the Arts
University of Michigan
Ann Arbor, Michigan

Charles S. Greene, DDS
Clinical Professor
Department of Orthodontics
College of Dentistry
University of Illinois
Chicago, Illinois

David C. Hatcher, DDS, MSc, MRCD(C)
Adjunct Professor
Department of Orthodontics
School of Dentistry
University of the Pacific

Clinical Professor
Department of Orofacial Sciences
School of Dentistry
University of California at San Francisco
San Francisco, California

Private practice
Diagnostic Digital Imaging
Sacramento, California

Jing Hu, DDS, PhD
Professor and Chair
Center of Orthognathic and TMJ Surgery
Department of Oral and Maxillofacial Surgery
West China School of Stomatology
Sichuan University
Chengdu, Sichuan, China
<table>
<thead>
<tr>
<th>Name</th>
<th>Title and Affiliation</th>
</tr>
</thead>
</table>
| **Eric Ichesco, BS** | Research Laboratory Specialist
Department of Biologic and Materials Sciences
School of Dentistry
Chronic Pain and Fatigue Research Center
School of Medicine
University of Michigan
Ann Arbor, Michigan |
| **Jan Harm Koolstra, PhD** | Associate Professor (Dr)
Department of Oral Cell Biology and Functional Anatomy
Academic Centre for Dentistry Amsterdam
Amsterdam, The Netherlands |
| **Regina Landesberg, DMD, PhD** | Associate Professor
Division of Oral and Maxillofacial Surgery
School of Dental Medicine
University of Connecticut
Farmington, Connecticut |
| **Daniel M. Laskin, DDS, MS** | Professor and Chairman Emeritus
Department of Oral and Maxillofacial Surgery
Schools of Dentistry and Medicine
Virginia Commonwealth University
Richmond, Virginia |
| **Stefan Lauer, MD** | Research Fellow
Department of Anaesthesia and Pain Medicine
Royal Perth Hospital
Perth, Australia |
| **Gilles J. Lavigne, DMD, MSc, PhD, FRCD(C)** | Professor of Oral Medicine
Canada Research Chair in Pain, Sleep and Trauma
Dean, Faculty of Dental Medicine
University of Montreal
Sleep and Biological Rhythm Center
Montreal Sacré-Cœur Hospital
Montreal, Quebec, Canada |
| **Thomas List, DDS, Odont Dr** | Professor and Chair
Department of Stomatognathic Physiology
Faculty of Odontology
Malmö University
Malmö, Sweden |
| **Guido M. Macaluso, MD, DDS, MDS** | Professor of Clinical Dentistry
School of Dentistry
University of Parma
Parma, Italy |
| **Dorrit W. Nitzan, DMD** | Professor
Department of Oral and Maxillofacial Surgery
School of Dental Medicine
Hebrew University Hadassah
Jerusalem, Israel |
| **Richard Ohrbach, DDS, PhD** | Associate Professor
Department of Oral Diagnostic Sciences
Buffalo School of Dental Medicine
University at Buffalo
Buffalo, New York |
| **Sandro Palla, Dr med dent** | Professor Emeritus
Clinic of Masticatory Disorders, Removable Prosthodontics,
Geriatric and Special Care Dentistry
Center of Dental Medicine
University of Zurich
Zurich, Switzerland |
| **David A. Reed, PhD** | Postdoctoral Fellow
Department of Oral Biology
College of Dentistry
University of Illinois
Chicago, Illinois |
| **Ke Ren, MD, PhD** | Professor
Department of Neural and Pain Sciences
University of Maryland Dental School
Baltimore, Maryland |
| **Callum F. Ross, PhD** | Associate Professor
Department of Organismal Biology
University of Chicago
Chicago, Illinois |
| **Robert P. Scapino, DDS, PhD** | Professor Emeritus
Department of Oral Biology
College of Dentistry
University of Illinois
Chicago, Illinois |
Tobias Schmidt-Wilcke, MD, MA
Associate Professor
Department of Neurology
University of Tübingen
Tübingen, Germany

Stephan A. Schug, MD
Professor and Chair
Pharmacology, Pharmacy and Anaesthesiology Unit
School of Medicine and Pharmacology
University of Western Australia

Peter Svensson, DDS, PhD, Dr Odont
Professor
Section of Clinical Oral Physiology
Department of Dentistry
Aarhus University
Aarhus, Denmark

Ana Velly, DDS, MS, PhD
Assistant Professor
Faculty of Dentistry
Centre for Clinical Epidemiology and Community Studies
Jewish General Hospital
McGill University
Montreal, Quebec, Canada

Sunil Wadhwa, DDS, PhD
Associate Professor
Director, Division of Orthodontics
College of Dental Medicine
Columbia University
New York, New York

Yehuda Zadik, DMD, MHA
Chief Dental Officer
Israeli Air Force Surgeon General Headquarters
Israel Defense Forces, Tel Hashomer

Songsong Zhu, DDS, PhD
Associate Professor and Vice-Chair
Center of Orthognathic and TMJ Surgery
Department of Oral and Maxillofacial Surgery
West China School of Stomatology
Sichuan University
Chengdu, Sichuan, China

Tobias Schmidt-Wilcke, MD, MA
Associate Professor
Department of Neurology
University of Tübingen
Tübingen, Germany

Stephan A. Schug, MD
Professor and Chair
Pharmacology, Pharmacy and Anaesthesiology Unit
School of Medicine and Pharmacology
University of Western Australia

Peter Svensson, DDS, PhD, Dr Odont
Professor
Section of Clinical Oral Physiology
Department of Dentistry
Aarhus University
Aarhus, Denmark

Ana Velly, DDS, MS, PhD
Assistant Professor
Faculty of Dentistry
Centre for Clinical Epidemiology and Community Studies
Jewish General Hospital
McGill University
Montreal, Quebec, Canada

Sunil Wadhwa, DDS, PhD
Associate Professor
Director, Division of Orthodontics
College of Dental Medicine
Columbia University
New York, New York

Yehuda Zadik, DMD, MHA
Chief Dental Officer
Israeli Air Force Surgeon General Headquarters
Israel Defense Forces, Tel Hashomer

Songsong Zhu, DDS, PhD
Associate Professor and Vice-Chair
Center of Orthognathic and TMJ Surgery
Department of Oral and Maxillofacial Surgery
West China School of Stomatology
Sichuan University
Chengdu, Sichuan, China
The five chapters in this section are devoted to topics that expand the understanding of orofacial and temporomandibular disorder (TMD) pain phenomenology. The authors have summarized the current research in their respective areas, and they offer projections for future applications of that research to the clinical situation. Advances in these areas are having a profound impact on both researchers and clinicians, and already many of those advances are being applied to the management of TMD patients.

In the Dubner, Ren, and Sessle chapter, the newest concepts of pain neurophysiology are well summarized in just one of their sentences: “An emerging concept is that the immune cells, glia, and neurons form an integrated network in which activation of an immune response modulates excitability of pain pathways.” This is one of many fresh insights that their chapter provides regarding pain mechanisms in general and specifically musculoskeletal pain.

Benoliel, Svensson, and Eliav have reviewed the extensive literature on muscle pain, with special emphasis on masticatory myofascial pain. This review shows that many factors may be involved in the etiology and pathophysiology of such pain, including host susceptibility, genetically influenced physical traits, psychologic issues, and environmental parameters such as ethnicity, culture, and stress. Thus, this type of pain appears to be more complex than joint pain, which leads them to conclude that in the future “emerging pharmacotherapeutic targets [will] appear at various levels, including receptors, regulatory proteins, and downstream enzymes.”

Emshoff brings his wide experience in the study of temporomandibular joint arthritis to his extensive review of the literature on that topic. Many of the etiopathologic features of osteoarthritis in general have been elucidated in recent years, and this has shown that detrimental changes in bone, cartilage, and synovium appear to be interconnected in the pathogenesis of this disease. These findings have led him to conclude that future therapeutic areas on which to focus should include osteochondral angiogenesis, mitochondrial dysfunction, and chondroprotection through lubrication.

The topic of comorbidity has only recently become well recognized and widely studied in the pain field. The various conditions that are found to coexist in many TMD patients (especially chronic TMD patients) not only complicate the diagnosis of their facial pain complaints but also clearly affect the management of these problems. As Velly, Schweinhardt, and Fricton point out, clinicians need to identify comorbid conditions in TMD patients early so as to provide proper therapy to manage their TMD pain. This may require collaboration with other health care providers as part of a comprehensive rehabilitation treatment program. Their chapter provides the latest information on this important topic, along with suggestions for managing such patients clinically.

Macaluso, Carra, and Lavigne have provided an overview of how the topics of sleep and pain have converged in recent years. Sleep studies of pain and non-pain patients have demonstrated important differences between them. This has led to the conclusion that sleep deprivation and fragmentation have an essential role in the way pain is perceived and exacerbated. Sleep problems can exacerbate pain, and intense pain or variable pain intensity can lead to poor sleep. All concerned clinicians must be prepared to deal with this reality.
Peripheral Mechanisms

The TMJ and masticatory muscles are innervated by the primary afferent (sensory) nerve fibers of the trigeminal nerve. These fibers terminate as sense organs (receptors) that respond to peripheral stimulation of the tissues.1-3 The large-diameter, fast-conducting primary afferent nerve fibers (namely, the A-alpha [A\textsubscript{\alpha}] and A-beta [A\textsubscript{\beta}] afferents) end in the tissues, typically with connective tissue or epithelial cell specializations encapsulating their endings. These receptors respond to low-threshold (non-noxious) mechanical stimuli or movements. In primate jaw-closing and lingual muscles, some of these large-diameter afferent endings are associated with muscle spindles and Golgi tendon organs that respond, respectively, to muscle stretch and contractile tension; other orofacial muscles have few, if any, of these specialized endings. Some of the small-diameter, slow-conducting primary afferent (A-delta [A\textsubscript{\delta}]; C) instead terminate principally as free nerve endings, some of which can respond to non-noxious thermal stimuli (ie, warm or cold thermoreceptors). However, most free nerve endings are activated by noxious stimuli and are therefore termed nociceptors.

Activation of the nociceptive endings in the TMJ and masticatory muscles can ultimately lead to the perceptual, reflex, and other behavioral responses characterizing musculoskeletal pain. In contrast, the various low-threshold receptors in these tissues and their afferent inputs to the central nervous system (CNS) play a role in responses evoked by stimuli related to non-noxious joint position, movement, and muscle stretch or tension.4,5 It has been known for several decades that the TMJ is supplied by afferents principally in the auriculotemporal branch of the mandibular nerve and that in most mammalian species the richest innervation is in the posterolateral aspect of the TMJ capsule. However, there is conflicting data on whether the articular surfaces and disc of the TMJ are innervated. The innervating fibers may not all be sensory (ie, afferents) but may include efferents of the sympathetic nervous system.1-3,6 Free nerve endings are abundant in the TMJ and also in the masticatory muscle tissues, but more specialized receptors are sparse except for those muscles with muscle spindles and Golgi tendon organs.

About 40 years ago, the first electrophysiologic investigations were made of the response properties of TMJ and masticatory muscle afferents.1,6-8 They documented that low-threshold non-nociceptive afferents have either slowly adapting or rapidly adapting responses to jaw movement or change in condylar position, and these responses were implicated in the sense of jaw movement and jaw position sense (kinesthesia). It became apparent, however, that other primary afferent...
The early pathophysiologic theories offered “one cause, one disease” hypotheses involving such things as muscle hyperactivity, altered occlusion, or stress. However, these theories were largely based on cross-sectional studies that are not adequate for establishing causality or possible risk factors. Accumulated data have now indicated a more complex etiology, and the most current concepts are the multifactorial\(^\text{14,15}\) and biopsychosocial\(^\text{16}\) theories. Both of these theories propose a complex interaction between environmental, emotional, behavioral, and physical factors and have increased our understanding of the factors involved at a population or group level. However, specific risk factors may not be active in any given case, and therefore these concepts still do not explain why an individual patient develops MMP. Dworkin et al\(^\text{17,18}\) approached the question of pathophysiology using prospective studies and showed early on the importance of risk factors such as the psychologic profile and the presence of pain in other sites. These and other studies have established psychosocial distress and impaired pain modulation as the two major emerging factors in understanding the etiology of persistent MMP\(^\text{19-22}\). It has become clear that these factors act within a milieu of further instigating or modulatory factors such

Table 2-1 Diagnostic criteria for masticatory myofascial pain

<table>
<thead>
<tr>
<th>Myofascial pain*</th>
<th>Myofascial pain with or without limited opening†</th>
</tr>
</thead>
</table>
| Regional, dull, aching pain
 • Aggravated by mandibular function | Axis I: Physical findings
 Complaint of pain of muscle origin
 • In jaw, temples, face, preauricular, or auricular at rest or during function |
| Hyperirritable sites or trigger points
 • Frequently found within a taut band of muscle tissue or fascia
 • Provocation of these trigger points alters the pain complaint and reveals a pattern of referral
 • More than 50% reduction of pain is inducible by muscle stretch preceded by trigger point treatment with vapocoolant spray or local anesthetic injection | Pain associated with localized areas of tenderness to palpation in muscle
 Pain on palpation in more than three of the following sites and at least one of which is ipsilateral to the pain complaint (right/left [R/L] muscles count for separate sites):
 • R/L temporalis: posterior, middle, anterior, tendon (8 sites)
 • R/L masseter: origin, body, insertion (6 sites)
 • R/L posterior mandibular region (2 sites)
 • R/L submandibular region (2 sites)
 • R/L lateral pterygoid region (2 sites)
 Myofascial pain as above accompanied by:
 • Stiffness of muscles
 • Pain-free unassisted mandibular opening of > 40 mm
 • With assistance, an increase of ≥ 5 mm in mandibular opening |
| Signs and symptoms that may accompany pain
 • Sensation of muscle stiffness
 • Sensation of acute malocclusion, not clinically verified
 • Ear symptoms, tinnitus, vertigo, toothache, tension-type headache
 • Decreased mouth opening; passive stretching increases opening by > 4 mm
 • Hyperalgesia in the region of referred pain | |
| No psychosocial assessment required | Axis II: Psychosocial comorbidity‡
 Pain intensity and pain-related disability
 • Graded chronic pain scale
 • Jaw disability checklist
 Depression and somatization
 • Symptom checklist for depression and somatization (SCL-90) |

*American Academy of Orofacial Pain.\(^\text{2}\)
†Research Diagnostic Criteria for Temporomandibular Disorders.\(^\text{3}\)
‡Other validated measures may be used.\(^\text{4}\)
Nervous System Alterations in MMP Patients

Pain modulation and MMP

Complex behavioral influences such as anxiety, depression, belief states, and cognition can separately influence pain perception and the pain experience. A key system that is able to...
Hypothetical model of cartilage and subchondral bone interaction in OA. (a) Healthy chondrocytes suffering from a pathologic strain (due to instability of the joint or severely increased mobilization) start to become hypertrophic and produce growth factors (eg. VEGF) that diffuse toward the underlying bone marrow and stimulate osteoclastogenesis. (b) Persisting strain. Chondrocytes become more hypertrophic and produce less sulfated glycosaminoglycans (sGAGs) to sustain the cartilage. Osteoclasts start to tunnel through the subchondral bone, inducing the first changes to the biomechanical properties of the tissue. (c) Progressive phase of OA. The tidemark between cartilage and bone shifts upward, reducing cartilage thickness. The remaining cartilage is strongly depleted of sGAG and becomes structurally deprived. Osteoclast activity extends into the calcified cartilage up to the border with the deep zone of the cartilage. There is vascular ingrowth into the cartilage via the pores. Later on, osteoblasts will infiltrate and start to deposit bone, resulting in end-stage sclerosis. (Reprinted from Weinans et al. with permission.)

and that the activated HIF-1α can induce osteoclastogenesis via repression of osteoprotegerin expression.

Subchondral bone

An intriguing aspect of OA is the increased turnover and subsequent changes in the subchondral bone. One of the few known molecules that could initiate this high turnover is VEGF. It has been observed that the deep articular chondrocytes show VEGF expression 2 weeks after OA induction by anterior cruciate ligament transection (ACL-T) or a combination of ACL-T and partial meniscectomy in the rat. In vitro studies have shown that chondrocytes respond to mechanical overloading with the expression of HIF-1α and VEGF, subsequently leading to the induction of MMP-1, -3, and -13, which mediate a cartilage-destructive process. VEGF has also been shown to promote angiogenesis and osteoclastogenesis as a consequence of overloading, which could potentially initiate a cascade leading to subchondral plate resorption and high subchondral bone turnover (Fig 3-5).

An interesting molecule in this respect is sclerostin, which was found to have greater expression in the chondrocytes in OA joints than in the chondrocytes in healthy joints. Sclerostin inhibits the wingless/integrated (Wnt) signaling pathway, and Wnt signaling is known to be critically involved in the biology of the cartilage–subchondral bone unit. An attempt to avoid an OA-related phenotype upregulation of sclerostin by chondrocytes could be the rescue response. In this way, cartilage degradation could be prevented while bone remodeling would be stimulated. This hypothesis has been supported by study findings in a rat model in which Wnt signaling inhibition indeed protected against the progression of OA.
Stress-Field Translation and Condyle Metabolism

Mechanical loading during movement is essential for maintenance of the articular tissues because, by regulating tissue remodeling, mechanical forces maintain healthy cartilage. However, not all loading conditions have a positive effect on cartilage metabolism. For instance, while cyclic loading or loading within a physiologic range increases proteoglycan synthesis, cartilage overloading, underloading, and static loading cause proteoglycan depletion. Mechanical loading leads to compression of the articular cartilage and matrix deformation, stimulating the chondrocytes' metabolic activity. In particular, the mechanical loading leads to complex changes within the tissue that include matrix and cell deformation, hydrostatic pressure gradients, fluid flow, altered matrix water content and changes in osmotic pressure, and ion concentration. Chondrocyte mechanoreceptors such as mechanosensitive ion channels and integrins are involved in recognition of these mostly physical changes (mechanotransduction). For instance, activation of the mechanosensitive ion channels by the mechanical stimulation leads to ion influx, in particular calcium ions, and activates intracellular signaling pathways that modulate protein synthesis (see Ragan et al.10 for detailed information).

Chondrocytes respond to mechanical stimuli by activating anabolic or catabolic pathways. Changes from anabolic to catabolic signaling can lead to DJD. Consequently, cell-matrix interactions are essential for maintaining the integrity of the articular cartilage, and an intact matrix is essential for chondrocyte survival and transmission of mechanical signals.

The authors’ pilot experiments showed that plowing can compromise cartilage integrity in a force-related manner by causing cell death at the cartilage surface. In addition, plowing alters chondrocyte metabolism by increasing the expression of the catabolic enzyme stromelysin-1 (matrix metalloproteinase 3 [MMP-3]), slightly decreasing that of aggrecan, and augmenting the degree of glycosaminoglycan (GAG) degradation (Figs 9-8 and 9-9). Plowing caused an increase in catabolic activities starting with a compression force of 25N and a decrease of the anabolic activity starting between 50 and 100 N. These results should be interpreted with caution and without inferring that this loading regimen definitely initiates a degenerative process, because the altered metabolism could simply represent remodeling activity.

Cartilage has a poor intrinsic healing capacity. Nevertheless, after injury, the healthy chondrocytes promote a remodeling process involving the elimination of the damaged matrix and the building of new extracellular matrix (ECM). It is therefore possible that in the plowed cartilage the viable chondrocytes start remodeling the matrix by producing...
Current Understanding of Synovial Joint Lubrication

It has been shown that degradation of HA by hyaluronidase does not detrimentally affect joint lubrication. Interestingly, there is no significant difference in the molecular size of HA in the synovial fluid of patients with disc displacement and healthy individuals. Thus, it was realized that HA is not a lubricant per se and that adding high–molecular weight HA to the synovial fluid does not affect the friction coefficient. However, a significant increase in the coefficient of friction was observed after the HA in the synovial fluid was changed to low–molecular weight HA, thus supporting the possibility that HA has an indirect effect on joint lubrication. Hence, an array of other possible functions of HA in joint movement has been proposed, among which were the roles of a space filler, a wetting agent, a flow barrier within the synovium, and a protector of the cartilage surfaces. Besides its mechanical role in joint function, HA has been found in vitro to support joint integrity biochemically by acting as a protector against the action of phospholipase, an inhibitor of phagocytosis and chemotaxis, and as an anti-inflammatory agent. It also prevents the formation of scar tissue and angiogenesis.

According to Swann et al., the main synovial lubricant is a large water-soluble proteoglycan, which they termed lubricin and which is also known as superficial zone protein and proteoglycan 4. The multifaceted lubricin, which is encoded by the PRG4 gene, has a molecular weight of 206 kDa and consists of approximately equal proportions of protein and glycosaminoglycans. The latter contain negatively charged sugars, which possibly create the strong repulsive hydration forces that enable the molecule to act as a boundary lubricant. It is synthesized and selectively secreted by superficial chondrocytes in the articular cartilage (hence the term superficial zone protein) and by synovial lining fibroblast-like cells. The lubricin in the synovial fluid reduces the coefficient of friction of the articular cartilage surfaces, and accordingly it prevents cartilage wear and synovial cell adhesion and proliferation. Several studies also imply that lubricin expression plays a role in condylar cartilage growth.

It has been proposed that lubricin expression is regulated by mechanical stress; however, its influence regarding the TMJ remains unclear. Exposing synoviocytes, chondrocytes,
1,2-dimyristoyl-sn-glycero-3-phosphocholine, 128
5-hydroxytryptophan, 4

A
A-alpha fibers, 3
A-beta fibers, 3
Acute orofacial pain, 83–84, 92
ADAMTS4, 158–159
Adaptation, 120
A-delta fibers, 3–4, 6
Adenosine 5-triphosphate, 4
Adenosine monophosphate-activated protein kinase, 42
Adenoviral vector expressing human insulinlike growth factor-1, 179
Advanced glycation end products, 161
Aggrecanases, 34, 159, 180
Allodynia, 6, 15, 21
αδ modulators, 188–189
alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate, 9
Amygdala, 151
Anabolic signaling, 107
Anchored disc phenomenon, 127
Angiogenesis
factors that affect, 157
osteochondral, 42
Animal models
biomarkers developed using, 159–161
of osteoarthritis, 41
Anterior cingulate cortex, 13, 147f, 148
Anterior insula, 149
Antidepressants, 53, 186–187, 189
Arterial spin labeling, 143
Arthrocentesis, 127–129
Arthrography, 135
Articular bone, 172
Articular cartilage
autophagy in, 42
avascular properties of, 42, 116
collagenous fibers of, 116
deforming properties of, 113, 116
evolution of, 172
metabolism of, 177
in osteoarthritis, 34–39, 37f
principal stress in, 115, 117f
Articular disc
anteriorly displaced, 118
description of, 99, 101
energy density vs internal strain energy, 106
finite element analysis of, 114
friction effects on, 118
internal derangement effects on, 119
joint lubrication functions of, 102
lubricating system of, 124
mechanical behavior of, 118–119
plowing force of, 104
Astrocytes, 13
Autonomic nervous system, 20
Autophagy, 42

B
Back pain, 51
Benzodiazepines, 186–187
Biglycan, 160
Bilateral sagittal split osteotomies, 84
Biomarkers
aggrecanases, 159
animal models used to develop, 159–161
collagenases, 158–159
C-terminal telopeptide-II, 159
interleukin-1β, 156–157
monocyte chemoattractant protein, 157
prostaglandins, 157
of temporomandibular joint-osteoarthritis, 159–161
tumor necrosis factor-α, 156–157
Biomechanical modeling, 137–138, 138f, 140
Biomedical engineering, 138–140
Blood oxygen level–dependent imaging, 142
Bone morphogenetic proteins
BMP-2, 167, 179
description of, 40
Boundary lubrication, 124
Bradykinins, 4
Brain-derived neurotrophic factor, 4
Brain-imaging studies, 13
Brainstem nociceptive processing, 6, 8
Bruxism
description of, 24, 62
sleep, 61–62

C
Calcitonin gene-related peptide, 6
Candidate gene studies, 72
Cannabinoids, 190–191
Cartilage. See Articular cartilage.
Catabolic signaling, 107
Catastrophizing, 52, 95
Catechol-O-methyltransferase, 20, 25–26, 71, 87
Central sensitization, 8–12, 14–15, 141, 188, 190
Cerebral blood flow, 13
C-fibers, 4, 6
Chairside screening, 86
Chemical condylectomy, 128
Chemokines, 157
Chondrocyte(s)
- anabolic and catabolic factors that regulate, 38f
- description of, 34, 36f, 38f
- hypertrophic-like changes, 36f, 40f
- mechanical stimuli effects on, 107
- osteoarthritic, 102
- sclerostin expression in, 39
- vascular endothelial growth factor induction in, 38
Chondrocyte receptors, 38
Chondroitin sulfate, 159
Chronic pain
- acute pain progression to, 92
- description of, 151
- factors involved in, 50f
- glutamate and, 191
- masticatory myofascial pain and, 95
- prefrontal cortex involvement in, 13
- risk model for, 96
- sleep disorders and, 57, 60–62
Cinderella hypothesis, 24
Cingulate cortex, 147f, 148–149
Cingulotomy, 148
Cluster headaches, 26
Clustering, 96–97
Cognitive-behavioral therapies, 53, 63, 94–95, 97
Collagenases, 34
Collagenous fibers, 116
Community genomics, 74
Comorbid pain conditions
- description of, 1
- evidence-based treatment for, 53
- factors that affect, 52
- fibromyalgia, 20–21, 26, 49–50
- headache, 50, 62–63
- implication of, 51t
- masticatory myofascial pain, 26
- migraine headache, 50
- neck pain, 51
- self-management programs for, 53
- sleep disturbances caused by, 61
- studies of, 48t–49t
- summary of, 53
- treatment of, 52–53
- treatment responsiveness affected by, 95
Complete Freund’s adjuvant, 9
Complex diseases
- characteristics of, 92
- definition of, 92
- description of, 72–73
- immune system’s role in, 73, 73f
- phenotype, 75–76
Computer-aided design/computer-aided manufacturing technology, 139
Conditioned pain modulation, 83, 83f
Condition-specific measures, 93
Condylar blastema, 172
Condyle-fossa distance, 103f, 104
Cone beam computed tomography, 131, 134–135, 136f
Coping, 52
Corticosteroids, 128, 186
COX-1, 157
COX-2, 157
Craniofacial deformities, 137
C-terminal telopeptide-II, 159
Cytokines
- description of, 126
- interleukin-1β, 156–157
- monocyte chemoattractant protein, 157
- prostaglandins, 157
- tumor necrosis factor-α, 156–157
D
Deep bite, 23
Deep sequencing, 77
Deep sleep, 58
Degenerative joint disease. See Osteoarthritis.
Depression, 22, 93, 95
Descending modulation, 10–12, 11f
Diagnostic imaging, 133–137
Diffuse noxious inhibitory controls, 10, 83–84, 86
Diffusion tensor imaging, 142
Dimethyl sulfoxide, 186
Disc displacement, 109, 123, 136f
Discoidin domain receptor 2, 160
Disease
- complex. See Complex diseases.
- preclinical symptoms of, 92
Dorsolateral prefrontal cortex, 12
Dynamic brain imaging, 131
Dynamic loading, 102
Dynamic stereometry, 103, 109–110
E
Education-based self care model, 94
Effective connectivity magnetic resonance imaging, 142
Endochondral ossification, 40–41, 172
Endophenotypes, 76
Energy density, 106
Enkephalin, 10
Enzymes, degradative, 158–159
Epigenetics, 69, 73–74
Epigenome, 74
Epigenomics, 74
Ethnicity, 21–22
Etiology, 91–92
Evidence-based treatment, 53
Extracellular matrix, 34–35, 41, 107
F
Fibromodulin, 160
Fibromyalgia, 20–21, 26, 49–50
Fibrous mesenchyme, 169
Finite element analysis
applications of, 99, 115–119
challenges for, 120
description of, 113
future of, 119–120
history of, 114–115
purposes of, 114
safety applications of, 119
stress and strain values, 115–116
surgical planning uses of, 119
temporomandibular disorders application of, 119–120
temporomandibular joint applications of
adaptation predictions, 120
history of, 114–115
mechanical behavior, 118–119
normal function, 115–116
pathologic function, 118
Friction
articular disc affected by, 118
inadequate lubrication as cause of, 127
Functional brain imaging, 77
Functional connectivity magnetic resonance imaging, 142
Functional magnetic resonance imaging, 142

G
Gabapentin, 4, 188–189, 191
Gene expression, 73–74
Gene variants, 71f
Gene-environment interactions, 69, 72, 75, 77
Gene-gene interactions, 69, 72, 75, 77
Generic treatments, 96
Genes, in complex diseases, 72
Genetics
costs of, 70
literature regarding, 14
masticatory myofascial pain and, 25–26
overview of, 69–70
single nucleotide polymorphisms, 69
Genome-wide association studies, 70–71, 77
Genomic technology
advances in, 70–72
genome-wide association studies, 70–71, 77
single nucleotide polymorphisms, 70–71
Glia, 13
Gial cells, 191
Glutamate, 150, 191
Glutamate receptors, 21
Glutamate transporter, 13
Glycosaminoglycan, 107, 108f, 125
Gray matter volume, 146–148
Growth factors, 41

H
Hard tissue imaging, 133–135, 134f
Headaches
in children, 63
migraine, 50, 63
sleep bruxism associated with, 62
sleep disturbances and, 62–63
tension-type, 62–63
1H-MRS, See Proton magnetic resonance spectroscopy.
Host susceptibility, 26
Human Genome Project, 72
Human microbiome, 74–75, 75f
Hyaline cartilage, 118–119
Hyaluronic acid, 34, 35f, 42, 124–125, 128
Hyaluronidase, 125
Hydrostatic lubrication, 124
Hydrostatic pressure, 115
Hyperalgesia, 6, 15
Hypoxia, 25, 157–158
Hypoxia-inducible factor, 38, 158

I
Imaging. See also Neuroimaging.
advances in, 139–140
biomechanical modeling after, 137–138, 138f, 140
biomedical engineering uses of, 138–140
cone beam computed tomography, 131, 134–135, 136f
diagnostic, 133–137
hard tissue, 133–135, 134f
magnetic resonance imaging. See Magnetic resonance imaging.
of pain, 13
soft tissue, 135–137
IMMPACT. See Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials.
Immune system, 73, 73f
Incident-cohort studies, 91
Inferior parietal lobule, 147f
Inflammatory mediators
description of, 4, 155
interleukin-1β, 156–157
tumor necrosis factor-α, 156–157
Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials, 93
Insomnia, 61, 63
Insula, 149–150
Insular cortex, 149–150
Insulinlike growth factor-1, 179–180
Integrated Pain Adaptation Model, 25
Interdisciplinary treatment, 52–53
Interleukin-1β, 156–157
<table>
<thead>
<tr>
<th>Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interleukin-1 receptor antagonist, 180–181</td>
</tr>
<tr>
<td>Intermediate phenotypes, 76</td>
</tr>
<tr>
<td>Internal derangements, 93, 119</td>
</tr>
<tr>
<td>Internal strain energy, 106</td>
</tr>
<tr>
<td>International Classification of Sleep Disorders, 60–61</td>
</tr>
<tr>
<td>Intra-articular injections</td>
</tr>
<tr>
<td>bone morphogenetic protein 2, 179</td>
</tr>
<tr>
<td>corticosteroids, 186</td>
</tr>
<tr>
<td>insulinlike growth factor-1, 179–180</td>
</tr>
<tr>
<td>interleukin-1 receptor antagonist, 180–181</td>
</tr>
<tr>
<td>NEL-like molecule 1, 180</td>
</tr>
<tr>
<td>transforming growth factor beta, 178</td>
</tr>
<tr>
<td>Intraoral appliances, 53, 95</td>
</tr>
<tr>
<td>J</td>
</tr>
<tr>
<td>Jaw-closing muscles, 113</td>
</tr>
<tr>
<td>K</td>
</tr>
<tr>
<td>Keratan sulfate, 159</td>
</tr>
<tr>
<td>L</td>
</tr>
<tr>
<td>Lateral pain system, 146–148</td>
</tr>
<tr>
<td>Lateral pterygoid muscle, 120</td>
</tr>
<tr>
<td>Lifestyle, 25, 27</td>
</tr>
<tr>
<td>Light sleep, 58</td>
</tr>
<tr>
<td>Liposomes, 128</td>
</tr>
<tr>
<td>Low-threshold mechanoreceptive neurons, 6, 8</td>
</tr>
<tr>
<td>Lubrication, of temporomandibular joint, 123–129</td>
</tr>
<tr>
<td>Lubricin, 34, 42, 125–126</td>
</tr>
<tr>
<td>M</td>
</tr>
<tr>
<td>Macrophage colony-stimulating factor, 41</td>
</tr>
<tr>
<td>Magnetic resonance imaging</td>
</tr>
<tr>
<td>applications of, 136f</td>
</tr>
<tr>
<td>arterial spin labeling, 143</td>
</tr>
<tr>
<td>description of, 135–137</td>
</tr>
<tr>
<td>effective connectivity, 142</td>
</tr>
<tr>
<td>functional, 142</td>
</tr>
<tr>
<td>functional connectivity, 142</td>
</tr>
<tr>
<td>history of, 142</td>
</tr>
<tr>
<td>methods, 142</td>
</tr>
<tr>
<td>operating principles of, 142–143, 143f</td>
</tr>
<tr>
<td>Malocclusions, 23</td>
</tr>
<tr>
<td>Mandibular advancement appliances, 64</td>
</tr>
<tr>
<td>Mandibular condylar cartilage, 173</td>
</tr>
<tr>
<td>Mandibular hypoplasia, 119</td>
</tr>
<tr>
<td>Masticatory myofascial pain</td>
</tr>
<tr>
<td>algorithm of, 19f</td>
</tr>
<tr>
<td>autonomic nervous system and, 20</td>
</tr>
<tr>
<td>characteristics of, 17</td>
</tr>
<tr>
<td>chronic pain and, 95</td>
</tr>
<tr>
<td>comorbidities, 26</td>
</tr>
<tr>
<td>definition of, 47</td>
</tr>
<tr>
<td>diagnostic criteria for, 18t</td>
</tr>
<tr>
<td>ethnicity and, 21–22</td>
</tr>
<tr>
<td>genetic factors, 25–26, 151</td>
</tr>
<tr>
<td>historical perspectives on, 17–19</td>
</tr>
<tr>
<td>host susceptibility to, 26</td>
</tr>
<tr>
<td>lifestyle factors, 25, 27</td>
</tr>
<tr>
<td>nervous system alterations in, 19–21</td>
</tr>
<tr>
<td>neuropeptides and, 20–21, 26</td>
</tr>
<tr>
<td>occlusion and, 23</td>
</tr>
<tr>
<td>pain modulation and, 19–20</td>
</tr>
<tr>
<td>pressure pain thresholds in, 20</td>
</tr>
<tr>
<td>psychosocial factors, 22–23</td>
</tr>
<tr>
<td>sex and, 21</td>
</tr>
<tr>
<td>skeletal morphologic features, 23</td>
</tr>
<tr>
<td>sleep disturbances and, 26–27, 61</td>
</tr>
<tr>
<td>temporomandibular joint disorders and, 23–24</td>
</tr>
<tr>
<td>trauma as cause of, 22</td>
</tr>
<tr>
<td>trigger points associated with, 25</td>
</tr>
<tr>
<td>Matrix metalloproteinases, 34–35, 108f, 158, 180</td>
</tr>
<tr>
<td>Maxillofacial surgery, 119</td>
</tr>
<tr>
<td>Maximal mouth opening, 123–124</td>
</tr>
<tr>
<td>Mechanical loading, 107</td>
</tr>
<tr>
<td>Mechanical temporomandibular disorders, 95–96</td>
</tr>
<tr>
<td>Meckel's cartilage, 168–169, 172</td>
</tr>
<tr>
<td>Medial pain system, 148–150</td>
</tr>
<tr>
<td>Medical care delivery systems, 70</td>
</tr>
<tr>
<td>Mediolateral stress-field translation, 104–105</td>
</tr>
<tr>
<td>Medullary dorsal horn, 6</td>
</tr>
<tr>
<td>Metabolic phenotype, 74</td>
</tr>
<tr>
<td>Metabotropic glutamate receptors, 9</td>
</tr>
<tr>
<td>Metagenomic DNA sequencing, 74</td>
</tr>
<tr>
<td>Methyl salicylate, 186</td>
</tr>
<tr>
<td>Microbiome, 74–75, 75f</td>
</tr>
<tr>
<td>Microglia, 13</td>
</tr>
<tr>
<td>Migraine headache, 50, 63</td>
</tr>
<tr>
<td>Mini-anchors, 119</td>
</tr>
<tr>
<td>Mitochondrial dysfunction, 42</td>
</tr>
<tr>
<td>Modulus, 81</td>
</tr>
<tr>
<td>Monocyte chemoattractant protein, 157</td>
</tr>
<tr>
<td>MRI. See Magnetic resonance imaging.</td>
</tr>
<tr>
<td>Muscle hypoperfusion, 25</td>
</tr>
<tr>
<td>Muscle pain</td>
</tr>
<tr>
<td>exogenous models of, 24</td>
</tr>
<tr>
<td>pharmacotherapy for, 53</td>
</tr>
<tr>
<td>Muscle relaxants, 187</td>
</tr>
<tr>
<td>Myalgia, 23–24</td>
</tr>
<tr>
<td>Myofascial pain. See Masticatory myofascial pain.</td>
</tr>
<tr>
<td>N</td>
</tr>
<tr>
<td>N-acetylaspartate, 148, 150</td>
</tr>
<tr>
<td>Neck pain, 22, 51</td>
</tr>
<tr>
<td>NEL-like molecule 1, 180</td>
</tr>
<tr>
<td>Nerve growth factor, 4, 21, 42, 190</td>
</tr>
</tbody>
</table>
Neuroglial cells, 191
Neuroimaging. See also Imaging.
 antinociceptive areas studied using, 150
 central pain systems studied using, 146–151
description of, 131, 141
future applications of, 150–151
magnetic resonance imaging. See Magnetic resonance imaging.
 medial pain systems studied using, 148–150
 positron emission tomography, 144, 144f
temporomandibular disorder studies, 144, 145t
Neuropathic pain, 84, 86, 190–191
Neuropeptides, 20–21, 26
Neuroplasticity, 92, 190
Neutrophins, 4
Next-generation sequencing
 bioinformatics platform for, 72
description of, 70–72
 whole genome sequencing, 70, 72
NMAD receptor–ion channel complex, 9f
NMAD receptors, 21, 191
Nociception
 non-neural processes in, 12–13
 in sleep, 59
Nociceptive afferents, 4, 11
Nociceptive-specific neurons, 6, 8, 10
Nocturnal migraine headaches, 63
Non-neural processes, 12–13
Nonsteroidal anti-inflammatory drugs, 53, 185–186
Notch1, 172
NREM sleep, 58
N-type calcium channel, 191
Nuclear factor κB, 12, 35
Nucleus raphe magnus, 10
Numeric rating scales, 81
O
Obstructive sleep apnea, 61
Occlusal interferences, 23
Occlusion, 23
Octahedral shear stress, 115
Onabotulinum toxin, 186, 188
Opioid receptors, 10
Opioids, 10, 187, 189–190
OPPERA. See Orofacial Pain Prospective Evaluation and Risk Assessment.
Oral appliances, 64
Orofacial pain
 acute, 83–84
 bruxism secondary to, 62
 central mechanisms of, 6–12
 mandibular advancement appliances for, 64
 peripheral advancement appliances for, 64
 21st-century trends, 70
Orofacial Pain Prospective Evaluation and Risk Assessment, 19, 85, 96
Orthodontics, 23
Osteoarthritis
 animal models of, 41
 articular cartilage destruction in, 34–39, 37f, 42
 biologic targets in treatment of, 41–43
 bone changes in, 39–41
 cartilage abnormalities in, 34–39
 characteristics of, 155
 corticosteroids for, 128
definition of, 33, 101, 131, 177
etiopathogenic mechanisms of, 34–41, 35f–40f
 features of, 34–41
 friction and, 127
 hyaluronic acid effects in, 42
 inflammatory response in, 41
 lubricin protective effects in, 42
 mitochondrial dysfunction in, 42
 periarticular bone in, 40
 rat meniscectomy model of, 42
 research on, 33–34
 subchondral bone in, 37f, 39f, 39–41
 synovial inflammatory infiltrates in, 41
 synoviopathy associated with, 34
 in temporomandibular joint, 101, 109
treatment of, 41–43, 177
Osteochondral angiogenesis, 42
Osteophytes, 41
Overloading, 127, 127f
P
Pain
 back, 51
 chronic. See Chronic pain.
 imaging of, 13
 masticatory myofascial pain. See Masticatory myofascial pain.
 neck, 51
 neuropathic, 84, 86, 190–191
 orofacial. See Orofacial pain.
 palpatation-induced, 93
 persistence of, 51, 96
 progression of, 52f
 provocation, 93
 sleep and, 57, 59–60, 63–64
temporomandibular disorder–related. See Temporomandibular disorder pain.
Pain adaptation model, 24–25
Pain modulation, 19–20
Pain perception
 behavioral conditions that affect, 19
 measurement difficulties for, 72
 Pain-related awakenings, 26
Pain-related evoked potentials, 149
Palpation-induced pain, 93
Paradoxical sleep, 58
Parafuncional forces, 24
Patient-reported outcomes, 93
Patient-specific model, 138f
Peripheral sensitization, 4–6, 14–15
Personalized medicine, 70
Pharmacogenomics, 26
Pharmacologic treatment of α2δ, 188–189
α2δ, 188–189
antidepressants, 53, 186–187, 189
benzodiazepines, 186–187
cannabinoids, 190–191
future applications of, 190–191
historical review of, 185–186
ketamine, 189, 191
for muscle pain, 53
muscle relaxants, 187
nonsteroidal anti-inflammatory drugs, 53, 185–186
onabotulinum toxin, 186, 188
opioids, 187, 189–190
selective serotonin reuptake inhibitors, 187, 189
for temporomandibular disorder pain, 185–191
Phenotypes
functional brain imaging investigations of, 77
intermediate, 76
Phospholipase, 125
Phospholipase A2, 126
Phospholipids, 124, 126, 128–129
Placebo effect, 12, 151
Plowing force, 102, 102f
Polysomnographic recordings, 58, 58b
Positron emission tomography, 144, 144f
Positron emission tomography/computed tomography, 144
Posterior cingulate cortex, 147f, 149
Postherpetic neuralgia, 188
Preclinical symptoms, 92
Prefrontal cortex, 13
Pregabalin, 188–189, 191
Pressure pain thresholds, 20–21
Primary afferent neurons, 5f
Primary afferents, 3
Primary somatosensory cortex, 147f
Principal stress, in articular cartilage, 115, 117f
Proinflammatory cytokines, 126
PROs. See Patient-reported outcomes.
Prostaglandin E2, 20, 157
Protein kinase C, 21
Proteoglycans, 125, 178
Proton magnetic resonance spectroscopy, 142–143
Proton pump inhibitors, 188
Provocation pain, 93
Psychogenic pain, 85
Psychologic factors, 52
Psychophysiology, 79–80
Psychosocial factors, 22–23
P-type calcium channel, 191
Putative etiology, 91–92
Q
Quantitative sensory testing (QST)
acute orofacial pain, 83–84
afferent nerve fiber functions assessed with, 86
applications of, 85–87
background of, 79–80
conditioned pain modulation, 83, 83f
description of, 20
diffuse noxious inhibitory controls, 83–84, 86
future applications of, 85–87
history of, 79–83
neuropathic pain, 84, 86
response-dependent techniques, 82
somatosensory sensitivity, 86–87
stimuli used in, 79–80
stimus-detection, 80
summary of, 87
suprathreshold estimation, 80–83, 81f
temporomandibular disorders, 84–85
testing algorithms, 80
thermal detection thresholds, 84
traumatic neuropathic pain, 84, 86
triangulation procedure, 81, 82f
R
Receptor activator of nuclear factor κB, 41
Receptor for advanced glycation end products, 35, 161
Rehabilitation treatment model, 92, 96
REM sleep, 58
Research Diagnostic Criteria for TMD, 76
Rheumatic diseases, 33
Rheumatoid arthritis, 157
Rhythmic masticatory muscle activity, 62
Risk factors
description of, 14
genetic, 26
Rolling/plowing explants test system, 109
S
Satellite glial cells, 12
Scaffold biomaterials, 167
Schizophrenia, 74
Sclerostin, 39
Secondary cartilage, 169
Segmental modulation, 10
Selective serotonin reuptake inhibitors, 187, 189
Self care, 96
Self-management program, 53
Self-report condition-specific measures, 93
Serotonin, 20
Serotonin noradrenaline reuptake inhibitors, 189
Serotonin transporter gene, 25
Shear loading, 102
Shear stress, 115–116
Single nucleotide polymorphisms, 70–71
Skeletal morphologic features, 23
Sleep
 average duration of, 57
 brain activity during, 58
 deep, 58
 definition of, 57
 fragmentation of, 59
 light, 58
 medication effects on, 63
 nociception attenuation during, 59
 NREM, 58
 pain and, 57, 59–60, 63–64
 paradoxical, 58
 pathophysiology of, 57–58
 polysomnographic recordings of, 58, 58b
 REM, 58
 in sleep bruxism patients, 62
 Sleep arousals, 58, 61
 Sleep bruxism, 24, 61–62
 Sleep deprivation
 description of, 59
 migraine headaches precipitated by, 63
 Sleep disorders/disturbances
 assessment of, 63, 64b
 chronic pain and, 57, 60
 chronic widespread pain and, 61–62
 classification of, 60t, 60–61
 comorbid pain conditions as cause of, 61
 description of, 26–27
 headaches and, 62–63
 insomnia, 61, 63
 masticatory myofascial pain and, 26–27, 61
 temporomandibular disorders and, 61
 treatment of, 63
 Sleep hygiene, 63
 Sleep-disordered breathing, 61
 Sleep-related breathing disorders, 61
 Sleep-related movement disorder, 62
 SNRIs. See Serotonin noradrenaline reuptake inhibitors.
 Social support, 52
 Soft tissue imaging, 135–137
 Somatosensory cortex, 147f, 148
 Static loading, 102
 Stimulus-detection thresholds, 80
 Strain, 115–116
 Stress
 disorders related to, 22
 gene effects during, 76
 Stress (force)
 collagenous fiber resistance to, 116
 finite element analysis of, 115–116
 octahedral shear, 115
 shear, 115–116
 Stress relaxation, 118
 Stress-field translation
 condyle metabolism and, 107–109
 description of, 103–105
 mediolateral, 104–105
 recording of, 109
 Subchondral bone, in osteoarthritis, 37f, 39f, 39–41
 Subchondral sclerosis, 40
 Subnucleus caudalis, 6, 8
 Suction cup effect, 124
 Superficial zone protein, 125
 Suprathreshold estimation, 80–83, 81f
 Surface-active phospholipids, 124, 126–127
 Sympathetic nervous system, 25
 Synovial cells, 34
 Synovial chondromatosis, 136f
 Synovial joints
 lubrication, 124–126
 osteoarthritis and, 155
 Synovitis, 159

T
 Temporomandibular disorder pain
 comorbid conditions effect on, 49–51, 51t
 etiology of, 141
 factors that affect, 52
 fibromyalgia and, 49–50
 migraine headache and, 50
 persistence of, 51, 96
 pharmacologic treatment of, 185–191
 prognosis for, 51
 progression of, 52f
 signs and symptoms of, 47
 sleep fragmentation as cause of, 61
 Temporomandibular disorders
 condition-specific measures for, 93
 definition of, 13, 47
 finite element analysis applications, 119–120
 masticatory myofascial pain and, 23–24
 mechanical, 95–96
 overview of, 13–15
 prevalence of, 47, 167
 primary pain-related, 95
Temporomandibular joint
anatomy of, 168–169
arthralgia of
causes of, 123
description of, 47
intraoral appliances for, 53
clicking of, 93
development of, 168–169
disc. See Articular disc.
dynamic loading of, 102
evolution of, 169–173
finite element analysis of. See Finite element analysis.
imaging of, 133–140
immobilization of, 127
load distribution in, 113
locking of, 93
lubrication of, 123–129
osteoarthritis onset in, 101, 109
shear loading in, 102
static loading of, 102
stress-field translation in, 103–105
tractional forces in, 102–103
Tension-type headaches, 62–63
Testing algorithms, 80
Thalamocortical nociceptive processing, 8
Thalamus, 147f, 147–148
Tissue engineering, 167–174
Tissue inhibitors of metalloproteinase 1, 38, 109, 158
Toll-like receptors, 12
Tracial forces, 102–103
Transcription factors, 36f
Transforming growth factor beta, 178
Transforming growth factor beta-1, 167
Transient receptor potential receptors, 4
Trauma
masticatory myofascial pain secondary to, 22
neuropathic pain associated with, 84, 86
Treatment
advances in, 165
anticipated clinical applications of, 96–97
classification of, 93–94
comorbid pain conditions, 52–53
etiology effects on, 91–92
generic, 96
goals of, 52
interdisciplinary, 52–53
multimodal plan of, 53
pharmacologic. See Pharmacologic treatment.
presenting condition and, matching between, 94
rehabilitation model of, 92, 96
Treatment responsiveness
behavioral factors that affect, 95
accomplishing effects on, 95
catastrophizing effects on, 95
clinical effects on, 95
comorbid pain conditions effect on, 95
definitions of, 94–96
definitions and matching between, 95
diagnosis and, 95–96
dependent measures of, 95
evaluation of, 95–96
functional status and, 95
measurement of, 92–96
objective measures of, 93
predictions about, 92
presenting condition and, matching between, 94
self-report condition-specific measures of, 93
Thalamus, 147f, 147–148
Thalamocortical nociceptive processing, 8
Tissue engineering, 167–174
Tissue inhibitors of metalloproteinase 1, 38, 109, 158
Toll-like receptors, 12
Transcription factors, 36f
Transforming growth factor beta, 178
Transforming growth factor beta-1, 167
Transient receptor potential receptors, 4
Trauma
masticatory myofascial pain secondary to, 22
neuropathic pain associated with, 84, 86
Treatment
advances in, 165
anticipated clinical applications of, 96–97
classification of, 93–94
comorbid pain conditions, 52–53
etiology effects on, 91–92
generic, 96
goals of, 52
interdisciplinary, 52–53
multimodal plan of, 53
pharmacologic. See Pharmacologic treatment.
presenting condition and, matching between, 94
rehabilitation model of, 92, 96
Treatment responsiveness
behavioral factors that affect, 95
catastrophizing effects on, 95
clinical effects on, 95
comorbid pain conditions effect on, 95
definitions of, 94–96
definitions and matching between, 95
diagnosis and, 95–96
dependent measures of, 95
evaluation of, 95–96
functional status and, 95
measurement of, 92–96
objective measures of, 93
predictions about, 92
presenting condition and, matching between, 94
self-report condition-specific measures of, 93
Thalamus, 147f, 147–148
Thalamocortical nociceptive processing, 8
Tissue engineering, 167–174
Tissue inhibitors of metalloproteinase 1, 38, 109, 158
Toll-like receptors, 12
Transcription factors, 36f
Transforming growth factor beta, 178
Transforming growth factor beta-1, 167
Transient receptor potential receptors, 4
Trauma
masticatory myofascial pain secondary to, 22
neuropathic pain associated with, 84, 86
Treatment
advances in, 165
anticipated clinical applications of, 96–97
classification of, 93–94
comorbid pain conditions, 52–53
etiology effects on, 91–92
generic, 96
goals of, 52
interdisciplinary, 52–53
multimodal plan of, 53
pharmacologic. See Pharmacologic treatment.
presenting condition and, matching between, 94
rehabilitation model of, 92, 96
Treatment responsiveness
behavioral factors that affect, 95
catastrophizing effects on, 95
clinical effects on, 95
comorbid pain conditions effect on, 95
definitions of, 94–96
definitions and matching between, 95
diagnosis and, 95–96
dependent measures of, 95
evaluation of, 95–96
functional status and, 95
measurement of, 92–96
objective measures of, 93
predictions about, 92
presenting condition and, matching between, 94
self-report condition-specific measures of, 93
Thalamus, 147f, 147–148
Thalamocortical nociceptive processing, 8
Tissue engineering, 167–174
Tissue inhibitors of metalloproteinase 1, 38, 109, 158
Toll-like receptors, 12
Transcription factors, 36f
Transforming growth factor beta, 178
Transforming growth factor beta-1, 167
Transient receptor potential receptors, 4
Trauma
masticatory myofascial pain secondary to, 22
neuropathic pain associated with, 84, 86
Treatment
advances in, 165
anticipated clinical applications of, 96–97
classification of, 93–94
comorbid pain conditions, 52–53
etiology effects on, 91–92
generic, 96
goals of, 52
interdisciplinary, 52–53
multimodal plan of, 53
pharmacologic. See Pharmacologic treatment.
presenting condition and, matching between, 94
rehabilitation model of, 92, 96
Treatment responsiveness
behavioral factors that affect, 95
catastrophizing effects on, 95
clinical effects on, 95
comorbid pain conditions effect on, 95
definitions of, 94–96
definitions and matching between, 95
diagnosis and, 95–96
dependent measures of, 95
evaluation of, 95–96
functional status and, 95
measurement of, 92–96
objective measures of, 93
predictions about, 92
presenting condition and, matching between, 94
self-report condition-specific measures of, 93
Thalamus, 147f, 147–148
Thalamocortical nociceptive processing, 8
Tissue engineering, 167–174
Tissue inhibitors of metalloproteinase 1, 38, 109, 158
Toll-like receptors, 12
Transcription factors, 36f
Transforming growth factor beta, 178
Transforming growth factor beta-1, 167
Transient receptor potential receptors, 4
Trauma
masticatory myofascial pain secondary to, 22
neuropathic pain associated with, 84, 86
Treatment
advances in, 165
anticipated clinical applications of, 96–97
classification of, 93–94
comorbid pain conditions, 52–53
etiology effects on, 91–92
generic, 96
goals of, 52
interdisciplinary, 52–53
multimodal plan of, 53
pharmacologic. See Pharmacologic treatment.
presenting condition and, matching between, 94
rehabilitation model of, 92, 96
Treatment responsiveness
behavioral factors that affect, 95
catastrophizing effects on, 95
clinical effects on, 95
comorbid pain conditions effect on, 95
definitions of, 94–96
definitions and matching between, 95
diagnosis and, 95–96
dependent measures of, 95
evaluation of, 95–96
functional status and, 95
measurement of, 92–96
objective measures of, 93
predictions about, 92
presenting condition and, matching between, 94
self-report condition-specific measures of, 93