COMPOSITE VENEERS: THE DIRECT-INDIRECT TECHNIQUE
Composite veneers: the direct-indirect technique / Newton Fahl, Jr. and André V. Ritter.

Description: Batavia, IL: Quintessence Publishing Co, Inc, [2020]. Includes bibliographical references and index. Summary: "The book discusses the many applications of the direct-indirect technique using composites, including prepless contact lenses and veneers, veneers with preparation (discolored teeth), fragments, diastema closure, and noncarious cervical lesions, and offers step-by-step protocols for each"—Provided by publisher.

Identifiers: LCCN 2019046871 | ISBN 9780867159592 (hardcover)

Subjects: MESH: Dental Veneers | Composite Resins--therapeutic use | Dental Restoration, Permanent--methods | Esthetics, Dental | Contact Lenses

Classification: LCC RK652.5 | NLM WU 515 | DDC 617.6/95--dc23

LC record available at https://lccn.loc.gov/2019046871
Dedication

For from Him and through Him and for Him are all things. To Him be the glory forever! Amen. Romans 11:36

To “Vida” Grace, my loving wife and best friend. Thanks for always giving me the courage and push to take off and supporting me with the fuel to fly high. —NF

I dedicate this book to my father, Nestor M. Ritter (1941–2017), without whom none of this would have been possible. —AVR

Acknowledgments

I want to express my deepest love and gratitude to my parents—my role models in life—and my mentor and friend, Jerry Denehy. I’m deeply indebted to Mariano Flores (in memoriam) and Ron Jackson for opening up doors. A very special thanks to the Fahl Center Team for their dedication and support throughout my professional career. I am grateful to all educators, peers, and friends who have left their imprint on my personal and professional life. —NF

I would like to thank those who directly or indirectly contributed to my professional development. A very special thank you to my wife and partner in life, Jane Pozza, for her patience and support during the preparation of this book. —AVR
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foreword</td>
<td>vi</td>
</tr>
<tr>
<td>Preface</td>
<td>vii</td>
</tr>
<tr>
<td>1. The Direct-Indirect Concept</td>
<td>1</td>
</tr>
<tr>
<td>2. Composite Resins and Layering Strategies</td>
<td>19</td>
</tr>
<tr>
<td>3. Prepless Contact Lenses and Veneers</td>
<td>43</td>
</tr>
<tr>
<td>4. Veneers with Preparation: Discolored Teeth</td>
<td>127</td>
</tr>
<tr>
<td>5. Indirect Restorations Fabricated on Flexible Silicone Models</td>
<td>191</td>
</tr>
<tr>
<td>6. Direct-Indirect Class V Inlays</td>
<td>249</td>
</tr>
<tr>
<td>Index</td>
<td>284</td>
</tr>
</tbody>
</table>
Direct composite resin restorations currently provide long-term, affordable esthetics when utilized in the hands of a skilled and knowledgeable clinician. Indirect restorations also certainly provide excellent esthetics with distinct advantages and disadvantages compared to direct restorations. This book covers the concept of combining both approaches into a direct-indirect procedure with composite resin, a technique unfamiliar to many dental practitioners. The direct-indirect procedure allows the practitioner the opportunity to utilize the knowledge and skill of direct resin placement with the precision and convenience of indirect finishing and cementation.

I am very pleased that Drs Newton Fahl and André Ritter have chosen to write the first textbook that presents the unique combination of these procedures. Both authors bring years of recognized excellence in practice and a wealth of knowledge and experience with composite resin systems, as well as the respect of clinicians worldwide. Although perhaps best known for his effective clinical abilities, lecturing, and demonstration skills with direct composite resin restorations, Dr Fahl has utilized the direct-indirect restoration technique for many years with great success in his practice.

With excellent photography, precise drawings, and descriptive text, this book demonstrates the range of procedures that may be successfully treated with the direct-indirect technique. It also clearly defines the sequential steps necessary for their implementation. In describing these steps, the book provides an invaluable source of information for the construction of the direct restoration, the intraoral and extraoral finishing of the indirect restoration, and the proper selection of bonding and luting agents. For the reader, this is like getting two books in one, tapping into all of the authors’ knowledge in both direct and indirect areas. The authors share their recommendations on the proper selection and manipulation of resins and the correct choice and use of opacities for blocking stains. Bonding agents and luting agents and their involved procedures are also outlined in detail. An up-to-date review of currently available materials is described along with the specific techniques to properly utilize each of them effectively, and the clinical cases are clearly illustrated through step-by-step sequences.

As a clinician-educator myself who has worked with composite resins for over 50 years, I find this book to be an essential read for all dental practitioners who use composite resin systems. The direct-indirect technique offers great promise, but the wealth of information present in this book will be extremely valuable to anyone no matter whether they use direct, indirect, or direct-indirect techniques. This is a book well worth the wait!
Preface

It has been over 25 years since I came across Nathan Birnbaum’s publication on what I later came to call direct-indirect restorations. His work motivated me to investigate new ways to use composite resins other than the conventional direct approach. At first, the technique was very empirical, lacking a clinical protocol that would minimize failures. So I started experimenting with ways of working faster and more predictably to achieve outstanding results. My initial trials involved restoring simple cases with a single shade to primarily correct minor morphologic discrepancies. Soon I realized the direct-indirect technique could be expanded to other clinical challenges to address form and color issues of the esthetically compromised dentition. Thus I ventured into an arena that would reveal itself a lot more encompassing than I had ever fathomed. I moved from single-shaded contact lenses to thicker, more complex veneer-type restorations. Gradually, the level of complexity of what I could do with the direct-indirect approach became so intricate that it required being methodized into logical fundamental guidelines and clinical protocols to assist anyone who wanted to learn this unknown concept. Over the years, as my clinical expertise became intermingled with my teaching of the technique, ideas, workflows, and step-by-step protocols started to come together logically. It is precisely this long-term assembly of trials and errors, successes, and failures that I am pleased to introduce in this work with my coauthor, Dr André Ritter. Dr Ritter’s expertise in clinical dentistry and research, along with his outstanding editorial knowledge, was paramount for the compilation and completion of this book in its present form.

Our goal is to take the reader on a pleasurable journey to learn the direct-indirect technique. We divided the book into six distinct yet confluent chapters. The first chapter presents the rationale and introduces the benefits of the method. Chapter 2 lays the foundation for the proper selection of the restorative materials—composites, tints, and opaquers—and discusses layering concepts and their clinical implications. Chapter 3 introduces prepless contact lenses and veneers based on minimally invasive restorative strategies to solve minor to moderate anatomical problems. In chapter 4, solving discolored substrate challenges is addressed, introducing preparation design and more elaborate layering protocols with the use of opaquers. Multiple contact lenses and veneers—a challenging clinical scenario—is presented in chapter 5 as an indirect option on flexible models to assist the clinician in optimizing results. Finally, chapter 6 discusses and teaches the restoration of noncarious cervical lesions via Class V inlays, a technique that assembles all the benefits of the direct-indirect protocol to help the clinician address a prevalent pathology of this era with great success.
CHAPTER 1

The Direct-Indirect Concept

Use of Composite Resins

Light-activated composite resins are used extensively for the conservative functional restoration and esthetic enhancement of both anterior and posterior teeth. Modern composite resins present excellent esthetic and physical properties, are relatively easy to use for an array of simple and complex applications, do not require sophisticated and off-site equipment for their fabrication, and offer a comparatively inexpensive treatment option for patients of all ages. Through considerable investment in research and innovation, dental manufacturers have developed composite resins that can mimic with high fidelity the optical and colorimetric characteristics of dentin and enamel. At a time when digital dentistry is growing by the minute and CAD/CAM technology seems to permeate the clinical and laboratory environments irreversibly, there is still a huge demand for the use of minimally invasive adhesive protocols through the methodical and conscious application of composite resins. For decades the continuous evolution of adhesive technologies has generated the development of several noninvasive esthetic techniques using composite resins to correct a variety of defects in the color and shape of the anterior dentition. These defects include tetracycline staining, florosis, hypoplasia, hypocalcification, aging, pulpal necrosis, and morphologic defects due to caries, trauma, and genetic factors. Although far from being ideal, current adhesive systems offer an extremely broad and safe restorative potential, requiring only ultraconservative preparation or even no preparation of the dental structure, providing restorations with integrity and longevity.

When compared with ceramic restorations, the clinical longevity of composite resins seems to be a critical factor in the choice of restorative material for both clinicians and patients (Table 1). Although there are overlaps in their clinical indications, it is necessary to consider that composite resins and ceramics are distinct materials in their physical and mechanical properties and should therefore be evaluated separately relative to the benefits they offer. If the relative longevity of ceramic laminates is compared to that of composite resins, the observed results can vary significantly. The esthetic quality and longevity (or durability) of a dental restoration is affected by many factors, including...
CHAPTER 1 The Direct-Indirect Concept

The operator, the technique, the materials, the conditions in which the restoration is executed, and, finally, the patient, taking into account their age as well as their eating and personal habits (eg, smoking and parafunction). The literature presents clear evidence that composite resins and ceramics are materials that can be used synergistically, according to their best characteristics and properties, for the optimization of clinical results.

Another factor considered by clinicians in choosing a direct or indirect approach is the time required to perform the procedure. It is common to affirm that indirect procedures are more advantageous than direct procedures, from the point of view of predictability, clinical productivity, and financial gain, because they require less clinical chair time in their execution. This statement must be considered only partially true because it depends essentially on the type as well as number of restorations that will be fabricated, not to mention the technical knowledge and training that the operator must have to perform such procedures. In the over 60 years of combined teaching and clinical experience of the authors, they have learned that it is possible to exponentially optimize the clinical chair time and achieve optimal results of aesthetic quality and restorative precision with both techniques through learning and incorporation of methodical protocols.

Current composite resins exhibit esthetic and mechanical properties so similar to enamel and dentin that the operator factor may actually be what ultimately determines the level of satisfaction of our patients, not the restorative material itself.

<table>
<thead>
<tr>
<th></th>
<th>Direct (composite resin)</th>
<th>Direct-indirect (composite resin)</th>
<th>Indirect (ceramics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level of difficulty</td>
<td>Low to intermediate</td>
<td>Intermediate to high</td>
<td>Intermediate to high</td>
</tr>
<tr>
<td>Treatment time</td>
<td>Long</td>
<td>Intermediate</td>
<td>Long</td>
</tr>
<tr>
<td>Number of appointments</td>
<td>1–2</td>
<td>1–2</td>
<td>2–3</td>
</tr>
<tr>
<td>Quality of margins</td>
<td>Moderate</td>
<td>Excellent</td>
<td>Good to excellent</td>
</tr>
<tr>
<td>Alteration of form</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Modulation of color</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Final esthetics</td>
<td>Excellent</td>
<td>Excellent</td>
<td>Excellent</td>
</tr>
<tr>
<td>Longevity</td>
<td>Intermediate to high</td>
<td>Intermediate to high</td>
<td>High</td>
</tr>
<tr>
<td>Patient comfort</td>
<td>Intermediate</td>
<td>High</td>
<td>Intermediate to high</td>
</tr>
<tr>
<td>Cost to dentist</td>
<td>$</td>
<td>$</td>
<td>$$$</td>
</tr>
<tr>
<td>Cost to patient</td>
<td>$</td>
<td>$</td>
<td>$$$</td>
</tr>
</tbody>
</table>

TABLE 1 Comparison of direct, direct-indirect, and indirect restorations
Patient satisfaction is also an essential factor in the selection of either composite resins or ceramics. A study evaluating the degree of satisfaction of patients submitted to three distinct types of veneers—direct resin, indirect resin, and ceramic restorations—demonstrated that patients favored ceramic veneers after 2 years. However, current composite resins exhibit esthetic and mechanical properties so similar to enamel and dentin that the operator factor may actually be what ultimately determines the level of satisfaction of our patients, not the restorative material itself.

Composite resins are extremely versatile materials. One of their greatest advantages over indirect restorative materials is that composite resins can be used with minimal reduction of natural tooth structure, given their minimal need for tooth preparation retention and resistance form. This allows for conservation of tooth structure and ultimately results in extended longevity for the tooth-restoration complex. The durability of direct composite resin restorations is affected by material factors, operator factors, and patient factors. However, when properly selected and used, these materials can yield excellent and long-lasting results.

Direct Restorations: The Orthodox Approach

Since their inception, composite resins have been mostly used via a direct technique. As such, the composite resin is directly applied to the tooth structure already adhesively prepared and artistically sculpted by light activating one or more increments to restore color and shape. The direct approach enables the operator to evaluate and control the restorative process as much as possible, from color selection to final morphology, and is usually done in a single appointment. For these reasons, the direct technique is the preferred composite resin technique. However, successful esthetic and functional results with the direct technique are not always easy to achieve and depend mainly on the operator’s understanding of the adhesive technology, knowledge of the mechanical properties of the composite resins and their optical relationship with the natural tooth structure, correct handling of layering techniques, and proper light curing. Because the process of application, finishing, and polishing is performed entirely intraorally, the direct technique has some disadvantages that can be minimized or even eliminated via the technique proposed in this book, the direct-indirect approach.
Disadvantages inherent to the direct technique include color instability, potential for wear, and polymerization shrinkage, which can result in estimated restoration longevity of 4 to 8 years according to some studies. All of these problems relate to the relative inefficiency and poor performance of intraoral light-curing units, either due to poor access to the surface being cured, poor operator technique, or a combination of these factors. Once again, however, the clinical scenario involved in the longevity (durability) of direct restorations is multifactorial, and the triad determined by material, technique, and operator must always be taken into account in the evaluation of causes for failure.

The Indirect Technique

To address the challenges presented by direct restorations, indirect techniques for composite resins have been developed, allowing them to be processed in the laboratory or chairside in the dental office. When properly light activated in the presence of vacuum or pressure and subsequently subjected to heat, these types of restorations exhibit greater conversion of monomers to polymers. This optimized conversion can result in improved physical properties of the material, such as increased wear resistance, improved hardness, polymerization shrinkage control, color stability, and enhanced biocompatibility. However, the increasing availability of ceramics with high-quality optical properties and excellent mechanical properties has rendered the use of the indirect technique for making composite resin veneers and anterior crowns obsolete.

The Direct-Indirect Technique

Thus, the direct-indirect restorative technique emerged, which brings together many of the advantages present individually in both the direct and the indirect techniques. As the terminology is new, it is necessary to first explain what the direct-indirect technique means. To explain it simply, a direct-indirect restoration is one in which the composite resin is sculpted DIRECTLY on the tooth structure without previous adhesive preparation, light activated, removed from the tooth, heat tempered, finished and polished extraorally, and finally “bonded” or adhered INDIRECTLY in the mouth in a single appointment. In fact, the technique comprises several important requirements for each of the steps and may present slight variations depending on the clinical procedure. Also called semidirect, this technique has clinical applications in the anterior and posterior dentition, and its benefits are widely discussed in the literature.
additional extraoral light and heat treatment in order to optimize the physical properties and clinical behavior of the restorations due to an increase in the polymeric conversion of the organic matrix of the restorative composite resins. Although of extreme importance, the optimization of physical properties is just one of the numerous advantages presented by the technique.

Because in the direct-indirect technique the restoration is sculpted directly on the tooth surface and removed after its light activation, it can be thermally treated, finished, and polished prior to processing for adhesion and luting. Thus, the resulting restoration exhibits improved mechanical properties, excellent esthetics, as well as unrivaled marginal adaptation and polishing. Moreover, the marginal gap that may result from polymerization shrinkage of the restoring resin in a direct technique is compensated by the precise adaptation of the directly sculpted veneer in association with a lower film thickness of the resin luting agent. The absence of a laboratory phase excludes provisionalization and eliminates the costs arising from this step. One of the most significant advantages of this technique, which will be very evident in the course of the book, is the possibility of the operator modulating the final color of the restoration with the luting agents, allowing for minor modifications in the restoration hue, chroma, and value (see chapter 3).

As presented in the chapters that follow, the direct-indirect technique has a wide range of applications, including prepless contact lenses and veneers, veneers with preparation (discolored teeth), fragments, diastema closure, and noncarious cervical lesions, among others. In some situations, the correct shape of microdontia-affected teeth or lingually inclined teeth can be re-established through a thin contact lens–type veneer with only one or two shades. Other times several layers of resins of different shades and opacities are necessary to correct tooth discoloration and achieve a natural mimicry.

The direct-indirect technique requires the operator to have an open mind to incorporate new paradigms into their clinical reality. The audacious learning process might result in a certain amount of discomfort because it involves overcoming unknown challenges, which will naturally push the operator back into his or her comfort zone. As in any other area of dentistry, the mastery of this technique requires focus, a desire to learn, and intense training. The reward will surely come amplified with an unprecedented level of professional and personal satisfaction.
CHAPTER 1 The Direct-Indirect Concept

FIG 1
Steps for direct-indirect composite restorations.

1. Shade selection → Establish the intended shade
2. Application of composite resin → Restoration sculpting and marginal imprint
3. Intraoral light curing → Initial polymerization
4. Restoration removal → Favor finishing ergonomics
5. Supplemental extraoral light curing → Maximize light activation / avoid pulp heating
6. Heat tempering → Optimize physical properties and biomechanics
7. Extraoral and intraoral finishing → Achieve ideal anatomy and margins
8. Extraoral polishing → Achieve marginal smoothness and gloss
9. Shade try-in (try-in pastes) → Modulate shade
10. Luting → Integrate color and form
The Direct-Indirect Technique
CHAPTER 1 The Direct-Indirect Concept

Improved Mechanical Properties

LIGHT ACTIVATION

The quality of a composite resin restoration and its clinical behavior are directly related to the degree of polymerization that the material will reach through the light-activation process. Three factors must be present and controlled for this process to take place correctly and fully: wavelength, intensity, and time of exposure. The wavelength comprises the spectral range emitted by the light-curing unit that will activate photoinitiator agents present in the organic matrix of the composite resin. In order to cover the different types of photoinitiators, which vary greatly from product to product, the ideal spectrum must have amplitude between 380 and 520 nm. Outside of this spectrum, light activation will not start properly. QTH (quartz-tungsten-halogen) lamp–based curing units are still currently used and are capable of activating all types of photoinitiators. LED curing lights are today the most prevalent in the market and have gained wide acceptance among the dental community. The clinician should select an LED curing light with a wide spectral range (polywave) to ensure correct photoinitiation. The intensity, or irradiance (measured in mW/cm²), is the power of the curing unit, responsible for the speed and extent of free radical formation, which breaks the double bonds between the carbon molecules to form more stable cross-linked polymer chains. Finally, time is the factor associated with the intensity producing the energy (mJ/cm²) required for the conversion process of the monomers into polymers to be complete. The more polymers that are formed, the higher the resistance to fracture and wear of a composite resin, and the better its color stability. Consequently, the better the photopolymerization, the better the mechanical properties and the greater the longevity of the restoration.

The wavelength is standardized for each light-curing unit, and there is nothing the clinician can do to improve its performance. The intensity can be controlled by changing the setting of each light-curing unit, when available, as well as by varying the distance of the light tip to the composite resin being cured. When these two factors are controlled, only the variation of the exposure time and thus the energy supplied may change the quality of the final polymerization of the restoration. In general, it is always prudent to light activate a composite resin for a longer time. Due to the enormous variation of spectral range, heterogeneity of the irradiance in the active tip, and different levels of intensity among the commercially available lights, it is very difficult to evaluate the efficacy of each light-curing unit. Therefore, to ensure correct light activation of composite resin restorations, some general rules must always be followed:

- Select a light-curing unit with a wide spectrum (380–520 nm).
- Set the curing light to its maximum intensity (ideally above 1,200 mW/cm²), being careful to avoid excessive heat output to prevent pulp and soft tissue damage. To prevent this, the tooth should be air cooled when light curing for extended times.
• Use curing lights that have a large-diameter guide (curing tip ≥ 10 mm in diameter).
• Keep the guide tip as close to the resin surface as possible.
• Exceed the exposure time recommended by the manufacturer.

Another benefit of the direct-indirect technique is the longer period of final extraoral light activation than we would normally use in the mouth. The main advantage of this step is that all energy can be supplied to the restoration without running the risk of causing deleterious pulp overheating by the heat emanating from the curing light.

HEAT TEMPERING

Light-cured composite resins undergo a late polymerization called dark phase polymerization.\(^50\) Approximately 75% of the polymerization reaction takes place during the first 10 minutes after light curing, and the process continues for a period of 24 hours,\(^51,52\) reaching its maximum peak at 7 days.\(^53\) Even following an extremely controlled light-activation protocol at room temperature, the monomer-polymer degree of conversion varies between 40% and 75%,\(^54,55\) thus leaving the restoration susceptible to inherent problems of incomplete polymerization by the presence of unreacted residual monomers.

One of the great benefits of the direct-indirect technique is that the mechanical properties can be optimized through a thermal treatment complementary to the light-induced polymerization, a process called heat tempering. When the composite resin is subjected to heat tempering after light curing, the conversion from monomer to polymer is maximized both in quantity and quality of the polymers formed, and a volatilization of residual monomers occurs.\(^56\) Although it is probable that this is the main factor, it is possible that the increase in temperature also produces a release of the stress formed during the initial polymerization by the annealing process.\(^57\) This results in immediately improved physical and mechanical properties including stiffness, hardness, modulus of elasticity, flexural strength, hygroscopic expansion, solubility, and color stability. However, there is evidence that composite resins that are not heat tempered still undergo the same improvement as heat-tempered composite resins in the course of time,\(^57\) prompting the question of whether the extra effort is really necessary. Although the literature is controversial even with respect to the merit of the procedure,\(^58,59\) the majority of the studies point to the benefits of heat tempering, and therefore the authors recommend its inclusion in the direct-indirect protocol because of the immediate benefits it provides.\(^60-62\) There are several heat-tempering methods, but all must employ dry heat, because the aqueous medium may potentially cause hydrolysis between the silane and the inorganic phase of the composite resin, which is undesirable.\(^63\)
Equipment that can be used for this purpose includes the following:

- Microwave oven
- Electric oven
- Heat-pressure polymerization unit
- Autoclave (dry cycle)

The time and temperature regimen described in the literature for the treatment of the light-activated composite resins varies according to the restorative material and the available equipment. Table 2 shows some possibilities.

In general, post–light activation heat tempering enhances the physical and mechanical properties of composite resins. However, it is important to remember that not all composite resins have the same chemical composition, varying in the types of organic matrix; types, size, and percentage of inorganic filler; and the type and amount of photoinitiators. Thus, composite resins with organic and inorganic content more favorable to the improvement by the additional thermal treatment will present a higher degree of polymerization and, consequently, better properties. For example, composites containing a higher percentage of photoinitiators will undergo a higher initial conversion rate by light activation and, consequently, will exhibit lower monomeric mobility once the glass phase is reached, which will mean that the complementary heat-tempering process has less effect on the improvement of physical and mechanical properties. However, composite resins that reach a lower degree of monomeric conversion by the initial light activation will tend to benefit more from the heat treatment.

Extraoral and Intraoral Finishing

The direct-indirect technique always requires the application of the composite resin with excess and increased thickness in order to achieve a good reproduction of the margins, as well as to facilitate restoration removal after initial intraoral curing without fracturing. Of course, such excesses would become very difficult to remove if finishing...
were done only intraorally. As the direct-indirect restoration presents a very similar handling and finishing concept to that of a provisional polymethyl methacrylate (PMMA) restoration, the clinical steps are also very similar. Therefore, the technique allows the visualization of micro and macro details through intra- and extraoral evaluation. The ergonomic mobility that the clinician gains during this phase to determine shape, contours, and subtle detail is extremely optimized because it does not require the use of rubber dam isolation, thus allowing a much greater interaction with the patient in the evaluation of results.

Marginal Adaptation

The choice of restorative composite resin and its correct application determine the degree of marginal adaptation of direct-indirect restorations. As in the direct technique, the use of spatulas, brushes, and other contouring instruments is indicated to obtain a refined anatomy. However, a major paradigm of the direct-indirect technique comprises the extensive use of gentle digital pressure, through finger molding, to make the primary contour of the restoration. This process produces better accommodation and penetration of the material and better impression of margins, depressions, and subgingival zones, in addition to reducing the time of clinical application.

After sculpting and intraoral light activation, the restoration is removed, and the margins are highlighted with a pencil for best visualization. Thereafter the finishing is done sequentially with high- and medium-grit aluminum oxide disks until “knife blade” margins are reached. These extremely fine edges will now be able to receive final polishing.

Polishing

A restoration that is made by the direct technique receives the finishing and polishing of interproximal and subgingival areas with diamond or carbide burs, abrasive strips, rubber rotaries, felt disks, and polishing pastes. There is evidence that single-step rubber-based rotary polishers are effective in achieving a high degree of initial polishing for microfill, nanofill, and hybrid composite resins. However, the quality (smoothness and gloss) of the marginal polishing offered by these instruments cannot be compared with that obtained only with the use of aluminum oxide disks. Aluminum oxide disks are among the best tools for obtaining excellent polishing of composite resins. Because the finishing and polishing of cervical margins of a direct-indirect restoration, as in the case of a veneer, is performed completely extraorally, there is no soft tissue damage, and the immediate clinical outcome always reveals an extremely well-adapted and biologically healthy interface (Fig 2).
CHAPTER 1 The Direct-Indirect Concept

FIG 2 Contact lens (CL) restoration and scanning electron micrograph (SEM) before and after luting. (Courtesy of Marcos Vargas, DDS, MS. Photography courtesy of Rodrigo R. Maia, DDS, MS, PhD.)
Polishing

Luted CL — buccal view Luted CL — mesial view Luted CL — distal view

SEM before luting SEM after luting
Possibility of Corrections

Clinical errors are undesirable and unpleasant for both the clinician and the patient. One of the great frustrations in direct composite resin procedures is when something goes wrong after the conclusion of the case, whether immediately or in the postoperative period. Errors are usually related to poor morphology or, more often, color mismatch. In the first case, the correction is quite simple; it suffices for the clinician only to re-touch the anatomy by subtraction or addition of material. When the error is in color, however, the solution may become a bit more laborious, depending on the degree of the mismatch. If any detail or desired color effect was not correct, the solution is in the partial removal or addition of material to the defective layer and its replacement with another layer of correct color. The great difficulty is when the final restoration presents serious errors in hue, chroma, and value. In this case, the clinician will need to completely remove the restoration and start over from the beginning, whether in the same or a subsequent appointment.

The direct-indirect technique offers the great benefit of enabling the clinician the opportunity to perform corrections more quickly in the same defective restoration, or discard it altogether and perform a totally new one, already contemplating the necessary changes. The major advantage is in the ability to perform minor chroma and value modulations, and to a lesser degree, hue, through try-in pastes. These pastes have varying degrees of opacity, hue, and saturation, which interfere with the color inherent in a direct-indirect contact lens or veneer. The opacity and thickness of the composite resin used in the restoration directly impact the ability to modulate the color through the luting resin, hence the importance of the correct choice and application of restorative and luting material so that the necessary color modulations can be performed effectively. As will be discussed in chapter 3, mastery of the four-dimensional color system is essential for the clinician to achieve the desired results through try-in pastes and luting resins.

References

Index

Page references followed by “f” denote figures and “t” denote tables.

A
Acid etching, 101
Adhesive luting, 102, 103f
Adhesives, dental
classification of, 101
etch-and-rinse, 101, 184, 266
self-etch, 101, 183, 266, 278
Airborne-particle abrasion, 101–102, 171, 185, 266, 267f, 276
Alginate impressions, 217
Aluminum oxide disks, 11, 98, 264f, 267f, 270f, 271
Artificial dentin
application of, 137, 148, 158
polychromatic layering of, 27, 28f, 31t
shades of, 27, 29
Artificial enamel, 27, 137
Atomic force microscopy, 255f
B
Bis-acryl mock-up, 218
Bleach body enamel, 159
Bleaching, 131–132, 154, 173
Blending effect, 21
Blue, 36f, 38f
Body and value enamels, with Type 1 contact lens, 49, 51f
Body enamels
bleach, 159
cervical, 159
composite resins and, 47
description of, 29, 31t, 207
high-chroma, 176
with Type 1 contact lens, 49, 50f
Bonding
adhesive protocol for, 100–102, 183–186
illustration of, 140, 150, 164, 178
Brown, 37f
Burs, 104, 180

C
CAD/CAM technology, 1
Ceramics
composite resins versus, 1, 2t
patient satisfaction with, 3
Cervical body enamel, 159
Chameleon-like effect, 21
Chroma, 93, 147, 170
Class V composite inlays. See Direct-indirect Class V restoration.
Color
mismatch of, 14
tints for. See Tints.
Composite crown, 197
Composite resin(s)
advancements in, 19
advantages of, 43
in anterior teeth, 20
application technique for, 96–98, 97f
ceramics versus, 1, 2t
clinical longevity of, 1, 2t
color properties of, 21–25
contact lenses affected by, 47, 47f
countouring of, 98–99
defects corrected using, 1
direct technique for, 1–4, 3–4
for direct-indirect Class V restoration, 257–259, 258t
extra- and intraoral finishing of, 10–11
finishing of, 98–99
fluorescence of, 22–24, 23f–24f
fluorescent, 23–24
gingiva-colored, 260f
gingival margins for, 96
handling of, 20–21, 252
heat tempering of, 9–10, 101, 99
indirect technique for, 1–2, 2t, 4
iridescence of, 25
layering concepts for, 26–28
light activation of, 8–9
light curing of, 98
marginal adaptation determined by, 11
mechanical roughness of, 100
microfill, 20
microhybrid, 20–21
nano-hybrid, 20
for noncarious cervical lesions, 250
opacity of, 22
opalescence of, 25, 25f
optical properties of, 21–25
polishing of, 11, 12f–13f, 98–99
properties of, 2, 20–25
sculpting/sculptability of, 20–21, 96, 252
selection criteria for, 2, 20–25
shading of, 26
thickness of layer, 96
tooth preparation for, 96
tooth-colored, 258, 260f
translucency of, 22
uses of, 1–3
for veneers for discolored teeth, 169–179
wear rate of, 257
Composite resin systems
fluorescence of, 24
selection of, 30–31
shading-based classification of, 26, 32t
types of, 31t–33t
viscosities of, 20
Contact lens effect, 43
Contact lens restoration, 12f
Contact lenses, prepless
benefit of, 45
bonding of, 184
chip on direct veneer with shade mismatch treated with, 66–76
clinical indications for, 44–45
composite resin material effects on, 47, 47f
definition of, 43, 45
enamel abrasion/erosion treated with, 45
fabrication of, 48
facioincisal line angle for, 98
heteromorphic teeth treated with, 44, 54–64, 116–122
illustration of, 46f
indications for, 44–45
light curing of, 99
luting resins with, 48
missing maxillary right central incisor restored with, 106–115
on multiple teeth, 220–233
primary anatomy refinement, 102, 103f
secondary anatomy, 104
show-through in, 92
silver powder or glitter over, 102, 103f
tertiary anatomy, 104
tooth preparation for, 96
tooth-substrate color for, 46
INDEX

Type 1, 49, 50f–51f
Type 2, 52–64
Type 3
case study of, 66
central and lateral incisors restored with, 204–214
case study of, 66
characteristics of, 65–76
veneers versus, 43, 44t
Corrections, 14
Creative Color Opaquer, 169–170, 170f
Crown lengthening, 237
Dark phase polymerization, 9
Dental adhesives, 101
Dentin
airborne-particle abrasion of, 266, 267f
application of, 137, 148, 158
polychromatic layering of, 27, 28f, 31t
shades of, 27, 29
blue fluorescence of, 22
bonding to, 183
color of, 22, 23f
discoloration of, 158
fluorescence of, 22–23
immediate dentin sealing, 185
opacity of, 22
sclerotic, 265–266
Dentin layer, 180
Direct restorations
characteristics of, 1–2, 2t
color mismatch with, 14
corrections necessary for, 14
description of, 3–4
disadvantages of, 4
errors associated with, 14
Direct-indirect Class V restoration
case study of, 271–280
characteristics of, 251t
composite handling with, 251t, 252
development of, 250
difficult-to-reach areas accessed with, 250
direct Class V restoration versus, 251t
field control using, 251, 251t
gingival margin finishing, 251t, 252
illustration of, 256f
marginal finishing for, 251t, 252
operator ergonomics with, 251t, 256–257
patient comfort with, 251t, 256
periodontal health with, 253
polymerization shrinkage-related stress on tooth, 251t, 252
postoperative evaluation of, 271
restoration marginal adaptation, 251t, 253
scanning electron microscopy image of, 254f
technique for
composite application, 261, 262f
composite resin selection, 257–259, 258t
extraradial finishing and polishing, 264
finishing, 270f, 270–271
layering, 258–259, 259f
light activation, 262–263
luting, 268, 269f
polishing, 270f, 270–271
preliminary surface treatment, 264–268
restoration removal, 262–263
tooth preparation, 261
Direct-indirect restorations
adhesive protocol for bonding, 100–102
advantages of, 4–5, 9, 92
applications of, 5
characteristics of, 1–2, 2t
corrections with, 14
definition of, 4–5, 92
extra- and intraradial finishing of, 10–11
finishing of, 104, 105t
heat tempering, 9–10, 10t
indirect restorations versus, 192t
marginal adaptation of, 11
operator challenges with, 5
polishing of, 11, 12–13t, 104, 105t
sandblasting of, 92
steps for, 6f–7f, 9–7f
Direct-indirect veneers, 127
Discolored teeth
maxillary central incisors
direct composite restoration for, 172–179
unsuccessful whitening, veneers for, 129–142
veneers for
composite resins for, 169–179
layering, 169–170, 180–182
material selection, 169–170
maxillary left central incisor, 129–142, 153–168
maxillary right central incisor, 145–151
opacifiers for, 169–170, 180
tooth preparation for, 127–128, 143–148
tooth surface treatment, 183
Dry heat, 9

E
Emergence profile, 99, 160
Enamel
abrasion of, 45
airborne-particle abrasion of, 266, 267f
artificial, 27, 137, 148
blue fluorescence of, 22
body. See Body enamels.
dentin color transmitted by, 22, 23f
erosion of, 45
etch pattern on, 101
fluorescence of, 22–23
iridescence of, 25, 25f
milky-white semitranslucent. See Milky-white semitranslucent enamels.
opacities of, 22, 23f
opalescence of, 25, 25f
polychromatic layering of, 27, 28f
shades of, 29–30
surface treatment of, for luting, 103f
translucency of, 22
translucent effect, 30, 31t
value. See Value enamels.
Enamel lingual shell, 157
Estelite Color system
opaquers, 38, 39f, 39t, 89, 170, 171f
tints, 35, 38f
Etch-and-rinse adhesives, 101, 184, 266
Extraoral finishing, of direct-indirect restorations, 10–11

F
Facial planes, 99
Facioincisal line angle, 98–99
Field control, for direct-indirect Class V restoration, 251, 251t
Finishing
of composite resins, 98–99
of direct-indirect Class V restoration, 270f, 270–271
extraoral, 10–11
of gingival margins, 261, 262f
intraoral, 10–11
INDEX

marginal, for direct-indirect Class V restoration, 25t, 252
of veneers, 104, 105t, 113, 139, 177, 186

Flexible die indirect technique
bis-acryl mock-up, 218
digital case optimization, 216
esthetic evaluation appointment, 218
fabrication stage, 218
first appointment, 215–218
fit-checking cast, 218–219
impressions, 217–218
mock-up, 216–217
photographic documentation, 216
second appointment, 219
shade selection, 217
try-in, 219
working models, 217–218, 225

Fluorescence, of composite resins, 22–24, 23f–24f

Free gingival margin, 261, 262f

G
Gingival margins
description of, 96
finishing of, 261, 262f
Gingivoplasty, 107

Gray, 37f–38f

H
Heat tempering, 9–10, 101, 99, 183, 263
Heteromorphic teeth
maxillary canines, and misaligned maxillary lateral incisors, 116–122
prepless contact lenses for, 44, 54–64, 116–122
High-chroma dentin, 175
Hue, 93, 147
Hydrophobic adhesive, 265f, 268f

I
Immediate dentin sealing, 185
Impressions, for indirect restorations, 217–218
Incisors. See Maxillary central incisors; Maxillary lateral incisors.
Indirect restorations
advantages of, 2, 4
anatomical refinement of, 219
case studies of, 193–214, 219–245
characteristics of, 1–2, 2t
direct-indirect restorations versus, 192t
flexible die model workflow for. See Flexible die indirect technique.
on flexible silicone models
case studies of, 193–214
technique for, 191
luting of, 219
polishing of, 219
protective splint for, 219
time requirements for, 2
try-in of, 219, 241
Inlays, Class V composite. See Direct-indirect Class V restoration.
Intraoral finishing, of direct-indirect restorations, 10–11
Intraoral layering, 198
Iridescence, 25, 25f

L
Lavender, 36f
Layering, 110
of composite resins, 26–28
direct-indirect Class V restoration, 258–259, 259f
intraoral, 198
polychromatic
description of, 27
for direct-indirect Class V restoration, 258
illustration of, 28f
polychromatic effects created using, 34, 36f
selection of, 30–33
LCO. See Low chroma opaque.
LED curing lights, 8
Light activation, of composite resins
description of, 8–9, 262–263, 263f
heat tempering after, 9–10, 263
Light curing
of composite resins, 98
of contact lenses, 99
equipment for, 8–9
supplemental, 99
of veneers, 99, 183
Light-curing units, 8–9
Lingually positioned teeth, veneers for, 45
Low chroma opaque, 170
Low-chroma dentin, 175
Luting, 73, 113, 211
of contact lens restoration, 12f–13f
direct-indirect Class V restoration, 268, 269f
everal surface treatment for, 103f
primary anatomy refinement after, 102, 103f, 161, 165, 200
secondary anatomy after, 104, 166–167, 200
tertiary anatomy after, 104, 166–167
Luting resins
chroma of, 93–94
color of, 92–93
description of, 48
hue of, 93
opacity of, 92–93
thickness of, 92
translucency of, 93
try-in pastes and, 93–94, 94f
value of, 93–94

M
Malaligned teeth, veneers for, 45
Marginal adaptation, 11, 251t, 253
Marginal finishing, for direct-indirect Class V restoration, 251t, 252
Maxillary canines, heteromorphic, 116–122
Maxillary central incisors
contact lenses for restoration of
element of, 46f
Type 3, 204–214
discolored
direct composite restoration for, 172–179
unsuccessful whitening, veneers for, 129–142
missing, lateral incisor used to replace, 106–115
Maxillary lateral incisors
heteromorphic, 54–64
misaligned, heteromorphic maxillary canines and,
116–122
peg, 44, 87–91
Type 3 contact lenses for restoration of, 204–214
MCO. See Medium chroma opaque.
Medium chroma opaque, 170
Microdontia, 44
Microfill composite resins
description of, 20
sculptability of, 20
Microhybrid composite resins
description of, 20
sculptability of, 21
thixotropic properties of, 21
Type 2 contact lens with, 53
Milky-white semitranslucent enamels
description of, 30, 31t, 180
Type 2 contact lens with, 53
Nanofill composite resins, 20
Nanohybrid composite resins
description of, 20
sculptability of, 21
Type 2 contact lens with, 53
Natural layering shading system, 27, 258
NCCLs. See Noncarious cervical lesions.
NLS system. See Natural layering shading system.
Noncarious cervical lesions
case study of, 272–280
categorization of, 258, 259f
cavitation of, 259f
composite resins for, 250
definition of, 249
direct-indirect Class V restoration for. See Direct-indirect Class V restoration.
direct-indirect restorations, 104, 105t
direct-indirect restoration, 270f, 270–271
direct-indirect restorations, 258
illustration of, 28f
direct-indirect Class V restoration,
polychromatic effects created using, 34, 36f
selection of, 30–33
Polymerization, dark phase, 9
Polymerization shrinkage, 4, 251t, 252
Polyvinyl siloxane, 217
Post-crown lengthening, 237
Prepless veneers. See Contact lens(es).
Primary anatomy refinement, 102, 103f, 161, 165, 200
Quartz-tungsten-halogen lamp-based curing units, 8
Red, 35, 37f–38f
Restorations. See also specific restoration.
esthetic quality and longevity of, 1–2
luting resin applied to, 101f
removal of, 98
Retraction cords, 261, 262f
Rotary polishers, 11
Rubber-based rotary polishers, 11
Sandblasting, 92
Sclerotic dentin, 265–266
Secondary anatomy, 104, 166–167, 200
Selective-etch approach, 185–186, 271–280
Self-etch adhesives, 101, 183, 266, 278
Semidirect technique, 4
Shade/shading
composite resin systems based on, 26, 32t
mismatch of
chip on direct veneer with, contact lenses for, 66–76
discolored maxillary peg lateral incisors with, 86–91
try-in technique for, 71, 82, 94–95, 95f, 162, 177, 199, 228
Silanation, 100
Silicone matrix, 174
Soft tissue conditioner, 108
Subgingival margins, 104
Submicron-filled composites, 257
Tertiary anatomy, 104, 166–167
Tints
definition of, 34
Estelite Color system, 35, 38f
illustration of, 176
indications for, 34
internal uses of, 35
selection of, 35
supplemental uses of, 34
Tooth crowding, 45
Tooth preparation
for composite resins, 96
for contact lenses, prepless, 96
for veneers. See Veneers, with tooth preparation.
Tooth substrate color, for prepless contact lenses, 46
Tooth whitening
oxidation process from, 22
unsuccessful, discolored endodontically treated maxillary left central incisor with, 129–142
Total-etch approach, 185
Trans enamel, 138, 176
Translucency
of composite resins, 22
of luting resins, 93
Translucent effect enamels, 30, 31t
Try-in, of indirect restorations, 219, 241
Try-in pastes, 93–94, 94f
Type 1 contact lenses, 49, 50f–51f
Type 1 veneer
case study of, 78–85
cervical chamfer in, 144
characteristics of, 77
discolored maxillary right central incisor treated with, 145–151
indications for, 144
layering sequence for, 182
tooth preparation for, 144–151
Type 2 veneer versus, 86
Type 2 contact lenses, 52–64
Type 2 veneer
case study of, 87–91
characteristics of, 86
discolored maxillary left central incisor treated with, 153–168
layering sequence for, 182
tooth preparation for, 152–168
Type 1 veneer versus, 86
Type 3 contact lenses
case study of, 66
central and lateral incisors restored with, 204–214
characteristics of, 65–76

U

Ultraviolet light, 22–24
UV light. See Ultraviolet light.

V

Value, 93
Value check, 147
Value enamels
description of, 30, 31t
illustration of, 160, 176, 207
with Type 1 contact lens, 49, 50f
Veneers
axial reduction for, 143
bonding of, adhesive protocol for, 183–186
clinical indications for, 44–45, 127
contouring of, 183
definition of, 43
on dentin with enamel margins, 185
direct, with shade mismatch and chip, 66–76
direct-indirect, 127, 171
discolored teeth treated with composite resins for, 169–179
layering, 169–170, 180–182
material selection, 169–170
maxillary left central incisor, 129–142, 153–168
maxillary right central incisor, 145–151
opaquers for, 169–170, 180
tooth preparation for, 127–128, 143–168
tooth surface treatment, 183
fabrication of, 48
faciocingual angle for, 98
finishing of, 104, 105t, 177, 186
laminate, 127
light curing of, 99, 183
lingually positioned teeth treated with, 45
malaligned teeth treated with, 45
maxillary left central incisor with unsuccessful whitening treated with, 129–142
polishing of, 135, 186
porcelain, 43
prepless contact lenses and case study of, 234–245
comparisons between, 43, 44t
primary anatomy refinement, 102, 103f, 161, 165
removal of, 138, 182, 238
short teeth and deficient direct composite resin restorations with NCCLs treated with, 78–85
show-through in, 92
silver powder or glitter over, 102, 103f
survival rates of, 127
thickness of, 92
with tooth preparation adequacy of, 180
adhesive protocol for bonding, 183–186
description of, 96
design of, 128
for discolored teeth, 127–128, 143–168
factors that affect, 143
guidelines for, 143–168
incisal reduction in, 143
need for, 127–128
restoration treatment, 183
tooth surface treatment, 183
transitional line angles for, 98
Type 1
case study of, 78–85
cervical chamfer in, 144
characteristics of, 77
discolored maxillary right central incisor treated with, 145–151
indications for, 144
layering sequence for, 182
tooth preparation for, 144–151
Type 2 veneer versus, 86
Type 2
case study of, 87–91
characteristics of, 86
discolored maxillary left central incisor treated with, 153–168
layering sequence for, 182
tooth preparation for, 152–168
Type 1 veneer versus, 86
VITA systems, 26, 29–30, 258
VITA-based shades, 27

W

Wavelength, of light-curing units, 8
White, 37f–38f
White spots, 159
Working models, for indirect restorations, 217–218, 225

Y

Yellow, 35, 36f, 38f