PRF in Facial Esthetics
PRF IN FACIAL ESTHETICS

Catherine Davies, MBBCh, MBA
Private Practice Specializing in Facial Esthetics
Johannesburg, South Africa

Richard J. Miron, DDS, BMSc, MSc, PhD, Dr med dent
Group Leader, The Miron Research Lab
Lead Educator, Advanced PRF Education
Venice, Florida

Quintessence Publishing
Berlin | Chicago | Tokyo
Barcelona | London | Milan | Mexico City | Moscow | Paris | Prague | Seoul | Warsaw
Beijing | Istanbul | Sao Paulo | Zagreb
To Dr David Koski

When I moved to the United States 3 years ago, somehow you convinced me to think BIG. You took time out of your schedule to mentor me, volunteered many of your hours freely to support our education programs, and have been supportive beyond my comprehension. You called me Lebron when I didn't understand. You taught me to “scale” when I knew only science. And you provided endless advice on topics I never considered relevant. I never expected to find such a wonderful role model and mentor, all calmly behind the scenes. You never asked for recognition. I have no words to express my gratitude and wanted to somehow show my appreciation. I therefore dedicate this book to you, Dr Koski. This one is for you, big guy! —RJM
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td></td>
<td>viii</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td></td>
<td>ix</td>
</tr>
<tr>
<td>Contributors</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>Introduction to Facial Esthetics and PRF</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Richard J. Miron and Catherine Davies</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Facial Anatomy, Skin Biology, and the Effects of Aging</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Catherine Davies and Richard J. Miron</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Photography in Facial Esthetics</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Walter Rozen, Richard J. Miron, and Catherine Davies</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Consultation for the Facial Esthetic Patient</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Richard J. Miron and Catherine Davies</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Consultation for the Hair Loss Patient</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Alan J. Bauman, Catherine Davies, and Richard J. Miron</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Use of Platelet-Rich Fibrin in Facial Esthetics</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>Richard J. Miron, Yufeng Zhang, Ana Paz, Masako Fujioka-Kobayashi, and Catherine Davies</td>
<td></td>
</tr>
</tbody>
</table>
7 / Biology of Microneedling 99
Erin Anderson, Nichole Kramer, Richard J. Miron, Ana Paz, and Catherine Davies

8 / Injection Techniques with Platelet-Rich Fibrin 123
Catherine Davies, Ana Paz, Alireza Panahpour, Ana Cristina, and Richard J. Miron

9 / Hair Regeneration with Platelet-Rich Fibrin 165
Catherine Davies and Richard J. Miron

10 / Lasers in Facial Esthetics 175
Ana Paz, Harvey Shiffman, Miguel Stanley, Catherine Davies, and Richard J. Miron

11 / Skin Care Products and Their Effect on Aging Skin 201
Geir Håvard Kvalheim, Catherine Davies, and Richard J. Miron

12 / Future Trends in Esthetic Medicine 217
Carlos Fernando de Almeida Barros Mourão, Delia Tuttle, Ruth Delli Carpini, Scott Delboccio, Richard J. Miron, and Catherine Davies

Index 230
Facial esthetics has become one of the fastest-growing industries in the world. The esthetic demand for patients worldwide has never been higher, leading to this multibillion-dollar, booming industry. As the field continues to evolve, it is important that all medical practitioners are able to provide solid, evidence-based procedures while minimizing complications. Platelet concentrates have long been utilized in regenerative medicine, and over the years, the removal of anticoagulants has further improved their safety and effectiveness. Today, platelet-rich fibrin (PRF) has nearly replaced platelet-rich plasma in many fields of medicine and has gradually made its way into the medical esthetic arena. Furthermore, its use has been combined with other leading therapies to expand treatment possibilities. As trends continue to support minimally invasive esthetic procedures, it is clear that both the beginner as well as the advanced practitioner seek convenient, safe, and effective therapies.

This textbook is a first of its kind and an introduction to PRF in facial esthetics. The book was a true joy to put together, as many international experts in various fields of medicine have tremendously improved the quality of the final chapters. It has been a privilege to collaborate with basic scientists, the developers and clinician-scientists of microneedling, leading experts in laser therapy and low-level laser therapy, experts in photography, as well as plastic surgeons and hair restorative surgeons. This book is truly unique in that it gathered numerous experts across many fields with the ultimate goal of collectively providing as much knowledge on this topic as possible. We are therefore thrilled to present the first edition of our textbook, PRF in Facial Esthetics, and we look forward to your future feedback.
We greatly acknowledge the tremendous contributions of our coauthors. Each of your specific expertise has been greatly valuable, and what a privilege to continue to work with each of you. The field will certainly continue to progress, and we sincerely enjoy our collaborations with each of you.

We equally want to thank Quintessence Publishing for their trust, commitment, and devotion to this project. Thank you to Bryn Grisham (Director of Book Publications), Leah Huffman (Senior Editor and Deputy Editorial Director), Angelina Schmelter (Senior Digital & Print Production Specialist), and William Hartman (Executive Vice President & Director). The quality work at Quintessence Publishing and the attention to detail regarding the preparation of this manuscript are truly special.

To the team at KVM Publishing who originally designed and provided some of the anatomical illustrations in this book, thank you. In particular, we thank Gerhard Sattler and Uliana Gout for laying the groundwork with their fantastic book on facial fillers.

To Advanced PRF Education at prfedu.com and all of its staff members, including Erin Anderson and Nichole Kramer from Dermapen, thank you for making teaching and education a top priority filled with exciting new challenges and ongoing learning experiences.

From Catherine Davies

I would like to express special thanks and gratitude to my amazing family—Paco, Zahra, Cuba, and Lila—for putting up with all the long working hours this year.

I would also like to thank Dr Richard Miron for his belief in me and for his invaluable guidance and advice during the writing of this book.

From Richard J. Miron

To my parents and family: Your unconditional love and support during this past year never goes unnoticed. Thank you for everything!

To Dr Catherine Davies: It has been a true joy and pleasure to work with you. Your bubbly personality and easy-to-understand teaching style is enlightening and seems to perfectly blend with my serious and rigorous scientific approach. I’ve enjoyed every moment of it—let’s keep going!

To Leah Huffman: How we managed three books together in 1 year is not something I could ever have imagined. Thank you endlessly for being dedicated, passionate, punctual, and simply the most outstanding and prolific editor!
Contributors

Erin Anderson
Master Aesthetician
AO Surgical Arts
Salt Lake City, Utah
Director of Education
Dermapen

Alan J. Bauman, MD
Private Practice Specializing in Hair Transplant Surgery
Boca Raton, Florida

Ana Cristina, DDS, MSc
Private Practice Specializing in Facial Esthetics,
Implantology, and Oral Maxillofacial Surgery
São Paulo, Brazil

Catherine Davies, MBBC, MBA
Private Practice Specializing in Facial Esthetics
Johannesburg, South Africa

Scott Delboccio, DMD
Private Practice
Naples, Florida

Ruth Delli Carpini, DMD
Private Practice Specializing in Cosmetic Dentistry
and Facial Esthetics
Milan, Italy

Masako Fujioka-Kobayashi, DDS, PhD
Research Associate
Department of Cranio-Maxillofacial Surgery
University Hospital of Bern
University of Bern
Bern, Switzerland

Nichole Kramer
Medical Aesthetician and Clinical Manager
Utah Body and Soul
Holladay, Utah
Co-director of Education
Dermapen

Geir Håvard Kvalheim
Founder of Ćuvget
Tromsø, Norway
Richard J. Miron, DDS, BMSc, MSc, PhD, Dr med dent
Group Leader, The Miron Research Lab
Lead Educator, Advanced PRF Education
Venice, Florida

Carlos Fernando de Almeida Barros Mourão, DDS, MSc, PhD
Private Practice
San Pedro, California

Alireza Panahpour, DDS
Private Practice Specializing in Cosmetic Dentistry
Los Angeles, California

Ana Paz, DDS, MS
Private Practice
Lisbon, Portugal

Walter Rozen
Professional Photographer
Venice, Florida

Harvey Shiffman, DDS
Private Practice Specializing in Laser Therapy
Boynton Beach, Florida

Miguel Stanley, DDS
Private Practice
Lisbon, Portugal

Delia Tuttle, DDS, MD
Private Practice
Lake Elsinore, California

Yufeng Zhang, MD, DDS, PhD
Professor, Department of Dental Implantology
School of Stomatology
Wuhan University
Wuhan, China
INTRODUCTION TO FACIAL ESTHETICS AND PRF

Richard J. Miron
Catherine Davies
Facial esthetics has become one of the fastest-growing industries in the world. While originally a number of minimally invasive procedures were utilized effectively in facial esthetics (including Botox [Allergan], hyaluronic acids, and polydioxanone [PDO] threads), more recently platelet concentrates have gained momentum because of their more natural regenerative approach. The main advantage of platelet concentrates is that they offer a safe, easy-to-obtain, and completely immune-biocompatible method for the healing or regeneration of aging skin. This differs significantly from previous modalities that aim to act as fillers or paralyzers, which initiate a foreign body reaction once placed within living tissue. As the population continues to age and becomes more concerned with their esthetic appearances, more and more clinicians and practitioners wish to offer patients a natural approach with platelet concentrates and more specifically platelet-rich fibrin (PRF). As trends continue to support minimally invasive esthetic procedures, it is clear that both beginner as well as advanced practitioners seek convenient, safe, and effective therapies. Platelet-rich plasma (PRP) was the first platelet concentrate utilized in facial esthetics because of its supraphysiologic accumulation of platelets and their respective growth factors, known stimulators of tissue regeneration. However, one of its main limitations is its incorporation of anticoagulants, known inhibitors of wound healing. Today, with advancements in centrifugation protocols and centrifugation tube characteristics, it has become possible to utilize a liquid injectable PRF without incorporation of anticoagulants. This formulation has been studied and utilized extensively in various fields of medicine and has become increasingly popular in facial esthetics. This textbook provides a first-of-its-kind introduction to the use of PRF in facial esthetics.
Aging of the Skin

Aging of the skin is an inevitable process that gradually occurs as we get older (Fig 1-1). Several factors have been associated with this process, including both genetic and environmental factors. Exposure to sun, pollution, and various chemicals have been known to cause skin and/or DNA damage, speeding the aging process. A number of changes to the skin may occur as a result, including skin atrophy, telangiectasia, fine and deep wrinkles, yellowing (solar elastosis), and dyspigmentation. Furthermore, poor diet, lack of exercise, caffeine intake, smoking, and drug use are additional factors known to speed the aging process.

One key element certainly important for overall health and particularly skin attractiveness is hydration. Dehydration of the skin may lead to epithelial cell apoptosis and flaky skin complexion. From this standpoint, skin dehydration is a major risk factor for skin aging, and many topical applications, including hyaluronic acid creams, are geared toward water retention as a modality to prevent dryness of the skin. Aging skin is also related to a number of obvious demarcations of the face (see chapter 2). Depressions in the corners of the mouth, cheeks, forehead, eyebrows, eyelids, and nose are all associated with aging (Box 1-1; see Fig 1-1). Based on visible differences that occur with aging, a variety of treatment options have been proposed to favor a more youthful appearance, but hydration is a key feature.

As the body ages, it undergoes many changes that directly impact the physiology of human tissues, resulting in lower cellular activity. These changes include a loss in density, increases in fat storage, and lower production of collagen. A reduction in collagen synthesis as well as its associated increase in collagen degradation both have apparent disadvantages leading to a net loss of facial volume, resulting in skin folds and wrinkles (see chapter 2). Based on these changes associated with aging, several years ago it was proposed that platelet concentrates could be utilized in facial esthetics to improve collagen synthesis and restore facial volume. The main function of platelet concentrates is to increase recruitment and proliferation of cells and to further speed revascularization/blood flow toward defective areas. Many advancements have been made since the first-generation platelet concentrate—platelet-rich plasma (PRP). Several devices and isolation kits have since been fabricated based on the concept of isolating platelets for regenerative purposes,
Traditional Biomaterials for Facial Rejuvenation

Traditional Methods for Facial Rejuvenation

One of the first methods proposed for facial rejuvenation incorporated acupuncture. This concept was derived based on accumulating evidence that trauma to the skin in the form of a needle and/or syringe, dermal roller, or more recently microneedling (see chapter 7) could induce slight tissue damage leading to new angiogenesis, growth factor release, and subsequent new tissue regeneration. This tissue regeneration resulted in a more youthful appearance.

Because of the popularity of such treatments in facial esthetics and rapidly increasing trends in the field, more invasive techniques have also been proposed. These include facelifts, aggressive laser treatment modalities, and various grafting procedures. One of the advantages of platelet therapies is their ability to be used in combination with microneedling (see chapter 7), lasers (see chapter 10), plastic surgery (see chapter 12), and hair restoration (see chapter 9) simply to improve healing outcomes.

Traditional Biomaterials for Facial Rejuvenation

While various protocols and injectable materials have been proposed in facial esthetics, patients generally seek more natural regenerative approaches with the shortest possible downtime. In addition, medicine has gradually and naturally progressed toward more minimally invasive procedures. Today, many different agents and biomaterials can be utilized to accomplish this task, including Botox, fillers (eg, silicone, calcium hydroxyapatite, polymethyl methacrylate, hyaluronic acid products, hyaluronic acid + calcium hydroxyapatite, polylactic acid), various laser therapies at different wavelengths/intensities, and polydioxanone (PDO) threads. These products and modalities have been

BOX 1-1

Progressive changes expected in normal aging

- Corners of the mouth move inferiorly, resulting in a slight frown look
- Cheeks sag inferiorly, resulting in the appearance of jowls
- Tissue around the eyes sags inferiorly
- Eyelids (upper and lower) sag inferiorly
- Tissue of the forehead drifts inferiorly, creating wrinkles and dropping the eyebrows downward with flatter appearances
- Nose may elongate and the tip may regress inferiorly
- Nose may develop a small to pronounced dorsal hump
- Tip of the nose may enlarge and become bulbous
- Generalized wrinkling to the face naturally occurs
Introduction to Facial Esthetics and PRF

made popular by extensive marketing and celebrity endorsements and have been demonstrated to be successful in various esthetic procedures to improve cosmetic appearance (Box 1-2).

Importantly, however, these techniques heavily rely on normal protective mechanisms of the epidermis, which can be altered or disrupted following their use. The use of Botox, for example, has shown secondary effects that may cause a cascade of reactions with potential consequences. Botox causes temporary denervation and relaxation of muscles by preventing the release of the neurotransmitter acetylcholine at the peripheral nerve endings. Clinicians generally recommend repeated injections every 6 months or so to maintain the facial appearance, but these injections may lead to secondary effects associated with an increased granular layer or thinning of the epidermis as a result of a foreign body reaction to this material. Other reported secondary effects include cases of muscle paresis including muscle weakness,

BOX 1-2

Unesthetic features that can be treated or eliminated with esthetic medicine procedures

- Scars
- Skin laxity
- Wrinkles
- Moles
- Liver spots
- Excess fat
- Cellulite
- Unwanted hair
- Skin discoloration
- Spider veins

FIG 1-2

Esthetic medicine focuses on improving cosmetic appearance via a variety of procedures aimed at restoring the patient’s youthful look. (a) PRF naturally regenerates tissues, resulting in a natural-looking outcome. (b) Dermal fillers, on the other hand, fill tissues unnaturally, resulting in a less natural-looking appearance. Full lips in women are often considered attractive and desirable in modern society, and lip augmentation with fillers is the traditional method by which to achieve that look.
brow ptosis, upper and/or lower eyelid ptosis, lateral arcing of the eyebrow, double or blurred vision, loss or difficulty in voluntary eyelid closure, upper lip ptosis, uneven smile, lateral lip ptosis, lower lip flattening, orbicularis oris weakness, difficulty in chewing, dysphagia, altered voice pitch, and neck weakness. And dermal fillers have been associated with over 40 cases of blindness!

Despite the potential for negative outcomes, Botox and dermal fillers are generally considered safe and effective (Box 1-3). Nonetheless, such cases of blindness and ptosis are sure to create some fear within the community. Therefore, other materials (especially those with limited complications) are constantly being investigated as potential alternatives that do not bear significant secondary side effects. The goal of therapy with PRF is not to replace these previously utilized materials but simply to offer an additional and safer modality to the field that regenerates tissues naturally (Fig 1-2a) as opposed to filling or paralyzing tissues unnaturally (Fig 1-2b). PRF therapy therefore offers a natural regenerative approach with natural-looking outcomes (see Fig 1-2a). While each of the previously utilized materials offers its respective advantages and limitations (like any material), it is important to note that each is also foreign to the body and creates an additional inflammatory response when entering the body. These products have certainly demonstrated low patient morbidity and complication rates, but less invasive therapies offer a decreased risk of potential complications and a reduction in patient fear. This is often heavily favored by new patients wishing to enter their first facial esthetic regimen.

Esthetic Medicine

The field of esthetic medicine typically encompasses three specialties: (1) plastic surgery, (2) dermatology, and (3) reconstructive surgery. These specialties offer both surgical and nonsurgical esthetic procedures to improve cosmetic outcomes (Box 1-4), and these procedures can improve quality of life, psychologic well-being, and social function for many patients.
It is now estimated that roughly 16 million esthetic procedures are performed annually in the United States alone, as reported by the American Society of Plastic Surgeons (Fig 1-3). Furthermore, reports have estimated that one billion people worldwide seek out solutions to help their facial and neck skin appear more youthful. This demand for facial esthetic procedures is only expected to further increase, as the skin care products market is valued at $177 billion annually. Therefore, the ability to offer a more natural, autologous concentrate of growth factors derived from peripheral blood offers a very easy-to-obtain and low-cost method to regenerate facial tissues for patients. These less-invasive procedures have further become a norm in combination with microneedling, facial skin rejuvenation procedures, and hair restoration. Blood concentrates offer the ability to reach supraphysiologic doses of growth factors and cells responsible for the healing of various tissues using a natural healing approach.
References

Index

Page references followed by “f” denote figures, “t” denote tables, and “b” denote boxes.

A
Acetylcholine, 4
Acne/acne scars
atrophic, 110t–111t, 112, 184f, 186
description of, 57
laser treatment for, 185–186, 185f
microneedling for, 110t–111t, 112
pathogenesis of, 185
polydioxanone threads for, 224f
Actinic elastosis, 144
Actinic keratosis, 116t–117t, 117
Acupuncture, 3
Adenosine triphosphate, 181
Adipose tissue grafting, 221–222
Adipose-derived stem cells, 222
AFG. See Autologous fat grafting.
Aging skin. See Skin aging.
Alaria exculenta extract, 205, 205b
Alb-PRF
clinical applications of, 221, 221f, 228,
228f
description of, 127f, 218
in vivo studies of, 220, 220f
liquid platelet-rich fibrin versus, 220f
in periorbital region, 145
protocol for producing, 218–219, 219f
in temple, 134
Alopecia
androgenetic, 22, 92, 112–113,
114t–115t
differential diagnosis of, 64
microneedling for, 112–113, 114t–115t
scarring, 75b
traction, 75b
Alopecia areata, 75b, 76, 113, 114t–115t
Alopecia totalis/universalis, 75b
Alpha granules, 83
Anagen effluvium, 75b
Anagen phase, of hair growth, 21, 22f
Androgen(s), 22
Androgenetic alopecia, 22, 92, 112–113,
114t–115t
Angiogenesis
platelet concentrates for, 25, 95
platelet-rich plasma for, 95
Angular artery, 131, 143
Anticoagulants, 1, 80
Antioxidants, 204
Apex nasi, 11f
Archiving of photographs, 41
Arctic C ˇaga extract, 202–203, 203f, 208
Arnica, 207–208
Arrector pili muscle, 20, 21
ASCs. See Adipose-derived stem cells.
ATP38, 183
Atrophic acne scars, 110t–111t, 112, 184f,
186
Autologous fat grafting
facial esthetics uses of, 221–222, 222f
for marionette lines, 157
B
Basic fibroblast growth factor, 181
Beta-glucans/beta-glucan M, 204, 205
bFGF. See Basic fibroblast growth factor.
Bioelectric stimulation, for hair loss,
226, 226f
BIO-PRF centrifuge, 89f
BIO-PRF lift, 128–130
Blepharochalasis, 10f
Blood assessment, 54
Blood centrifugation, 80, 80f
Bluish skin, 57
Bone(s)
aging effects on, 23
of face, 12f
Botox
description of, 1
forehead applications of, 137–138
muscle denervation and relaxation
caused by, 4
recommendations for, 4
safety of, 5, 5b
secondary effects of, 4
Brow lifting, high-intensity focused
ultrasound for, 226
Brow positioning, 45f
Brownish skin, 57
Bulla, 57, 57f
Burn scars
illustration of, 101f
microneedling for, 110t–111t
4-Butylresorcinol, 116
C
Café-au-lait macules, 186–187
CAL. See Cell-assisted lipotransfer.
CALMs. See Café-au-lait macules.
Camera, 30–32, 30f–32f
Cannula technique
in jawline, 161
in marionette lines, 157, 157f
in nasolabial folds, 151
Cannulas, 125, 125f, 126f
Canon Veos-SLR/Hair photography
package, 70, 70f
Carbon dioxide lasers
description of, 176, 184
skin resurfacing uses of, 188
Catagen phase, of hair growth, 21, 22f
Cell-assisted lipotransfer, 222
Cellular antioxidative assay, 203
Centrifugation
description of, 80, 80f
fibrin clot formation from, 82
horizontal, 86, 87f, 89f
illustration of, 104f
leukocytes from, 84f
low-speed centrifugation concept, 79,
84–85
Centrifuge, horizontal, 87f, 89f, 92, 104f,
127
Cheek
aging of, 146
anatomy of, 146, 146f
high-risk zones of, 147, 147f
platelet-rich fibrin injections in, 146–
149, 146f–149f
treatment of, 147f–148f, 148–149
Chin
aging of, 158, 158f
anatomy of, 158, 158f
high-risk zones in, 159, 159f
intravascular injection in, 159
platelet-rich fibrin injections in, 158–
161, 158f–161f
treatment of, 159–160
vertical superperiosteal depot
technique in, 160
Chromophores, 181, 189
Chronological aging, 100
Club hairs, 21
CO2 lasers. See Carbon dioxide lasers.
Cold packs, 124
Collagen-1, 88, 89f, 108f
Collagen induction therapy. See Microneedling.
Collagen synthesis, 2
Columella, 11f
Consultation
clarifying of patient expectations at,
52–53
considerations for, 52
hair loss treatment. See Hair loss,
consultation for.
informed consent for, 61
“Dr. Acula’s Facial,” 192, 193f
Dracula technique, 192, 193f
Drooping mouth corners, 156f
Dry skin, 57
Dye laser, 180

E
Efflorescence, 57, 57f
Electromagnetic radiation, 179
Electromagnetic spectrum, 179
Embolism, angular artery, 143
Epicranius muscle, 136
Epidermis
anatomy of, 19, 21, 177, 177f
lesions of, 187
rejuvenation of, 204–206, 205f
Epithelialization, 178
e-PRF, 92–93, 93f–94f, 124
Excimer laser, 180
Excoriation, 57, 57f
Exfoliating Foaming Cleanser, 208, 209f, 209t
Extrinsic aging, of skin, 100
Eyebrow ptosis, 10f

F
Face
aging of, 10f, 10–11, 23, 24f, 118
anatomy of, 10–11, 131–132, 10f–11f
arteries of, 15–16, 15f–16f
blood supply to, 15–16, 15f–16f
bones of, 12f
bony prominence assessment, 58f
depth distribution in, 14, 14f, 23
demarcations of, 2
fat distribution in, 14, 14f
features of, 53
functions of, 10
innervation of, 17–18, 17f–18f
measurement landmarks for, 11f
muscles of, 13, 13f
regions of, 130b
skelton of, 12f
subcutaneous fat of, 14, 14f, 24f
superficial fat distribution in, 14, 14f
vascular “danger zones” of, 131–132, 131f–132f
veins of, 15–16, 15f–16f
Facial artery, 150
Facial esthetics
adipose tissue grafting, 221–222
autologous fat grafting, 221–222, 222f
consumer demand for, 6
growth of, 1
inflammation control after, 203
lasers for, 176
Merz scale, 44, 44t, 45f–52f
microfocused ultrasound for, 225
platelet-rich fibrin in, 92–93, 93f–94f, 124

G
Gaseous lasers, 180
Glabella
aging of, 138, 139f
anatomy of, 11f, 138, 139f
frown lines in, 139f
as high-risk area, 131
high-risk zones of, 140, 140f
platelet-rich fibrin injections in, 138–141, 139f–141f
serial point injections in, 140
Glabellar lines, 10f, 48f, 139f

D
Deep cannula technique, 145
Deep medial cheek fat compartment, 142
Dehydration, of skin, 2
Delta aminolevulinic acid photodynamic therapy, 117
Deoxyhemoglobin, 182
Depressor anguli oris, 156
Dermal fillers
blindness associated with, 5
complications of, 1, 4f
lip augmentation uses of, 4f
platelet-rich fibrin and, 130, 218
safety of, 5, 5b
Dermal papilla, 21
Dermappen, 92, 93f, 99, 100f, 101, 119
Dermis, 19, 177, 177f
Digital compact cameras, 30f
Digital reflex cameras, 30f
Dihydrohelenalin, 207
DMC. See Deep medial cheek fat compartment.
Documentation
consultation, 58, 59f
esthetic treatments, 59f
photography, 28, 35–41

E
Efflorescence, 57, 57f
Electromagnetic radiation, 179
Electromagnetic spectrum, 179
Embolism, angular artery, 143
Epicranius muscle, 136
Epidermis
anatomy of, 19, 21, 177, 177f
lesions of, 187
rejuvenation of, 204–206, 205f
Epithelialization, 178
e-PRF, 92–93, 93f–94f, 124
Excimer laser, 180
Excoriation, 57, 57f
Exfoliating Foaming Cleanser, 208, 209f, 209t
Extrinsic aging, of skin, 100
Eyebrow ptosis, 10f

F
Face
aging of, 10f, 10–11, 23, 24f, 118
anatomy of, 10–11, 131–132, 10f–11f
arteries of, 15–16, 15f–16f
blood supply to, 15–16, 15f–16f
bones of, 12f
bony prominence assessment, 58f
depth distribution in, 14, 14f, 23
demarcations of, 2
fat distribution in, 14, 14f
features of, 53
functions of, 10
innervation of, 17–18, 17f–18f
measurement landmarks for, 11f
muscles of, 13, 13f
regions of, 130b
skelton of, 12f
subcutaneous fat of, 14, 14f, 24f
superficial fat distribution in, 14, 14f
vascular “danger zones” of, 131–132, 131f–132f
veins of, 15–16, 15f–16f
Facial artery, 150
Facial esthetics
adipose tissue grafting, 221–222
autologous fat grafting, 221–222, 222f
consumer demand for, 6
growth of, 1
inflammation control after, 203
lasers for, 176
Merz scale, 44, 44t, 45f–52f
microfocused ultrasound for, 225
platelet-rich fibrin in, 92–93, 93f–94f, 124

G
Gaseous lasers, 180
Glabella
aging of, 138, 139f
anatomy of, 11f, 138, 139f
frown lines in, 139f
as high-risk area, 131
high-risk zones of, 140, 140f
platelet-rich fibrin injections in, 138–141, 139f–141f
serial point injections in, 140
Glabellar lines, 10f, 48f, 139f
INDEX

Glogau classification, of photoaging, 54, 56t
"Golf ball chin," 159
Greasy skin, 57
Greater occipital nerve anesthesia, 168
Growth factors. See also specific growth factor.
microneedling release of, 107
platelet release of, 118
in platelet-rich fibrin, 80, 83–84
Hair
function of, 20–22
growth cycle of, 21–22, 22f
layers of, 21
loss of, 22
structure of, 20–22
Hair follicle, 20, 20f
Hair loss
bioelectric stimulation for, 226, 226f
case studies of, 170–172, 170f–173f
consultation for
cross-sectional trichometry, 67–68, 68f–69f
documentation, 70–74, 76, 70f–74f
examination, 67f–74f, 67–75
forms, 65f–66f, 73f–74f
hair pull test, 67, 67f
hair tug test, 67, 67f
history-taking, 64, 65f–66f
informed consent, 71, 76
laboratory investigations, 75
photographic documentation, 70–74, 76, 70f–74f
privacy issues, 64
scalp examination, 67, 67f
treatment planning after, 76
trichoscopy, 70, 70f
differential diagnosis of, 75, 75b
female pattern, 75b
goals for, 166
indications for, 76
Ludwig scaling system, 72, 72f
male pattern, 75b
nappage technique for, 169, 169f
Norwood scaling system, 72, 72f
point-by-point injection technique, 169, 169f
prevalence of, 63–64, 165
scalp
anesthesia of, 166–168, 167f–169f
anterior, 168, 168f
biopsy of, 72
examination of, 67, 67f, 69f
innervation of, 167, 167f
photographic documentation of, 71, 71f
posterior, 168, 168f
regional block of, 167
Hair follicle, 20, 20f
Hair Mass Index, 68, 68f
Hair pull test, 67, 67f
Hair removal, using lasers, 189–190
Hair tug test, 67, 67f
Hair zones, 21
HairCheck, 69f
Hands, 51f
Healing, wound. See Wound healing.
Helenalin, 207
Hemangiomas, 186
Hereditary hemorrhagic telangiectasia, 186
HIFU. See High-intensity focused ultrasound.
High-intensity focused ultrasound, 225–226
High-intensity light, 180
History taking
for facial esthetics consultation, 54
for hair loss consultation, 64, 65f–66f
HMI. See Hair Mass Index.
Horizontal centrifugation, 86
Horizontal centrifuge, 87f, 89f, 92, 104f, 127
Hyaluronic acid
description of, 1
liquid platelet-rich fibrin with, 222, 223f
platelet-rich fibrin with, 151, 222, 223f
skin dehydration prevention uses of, 2
Hypertrophic scars
laser treatment for, 184
microneedling for, 110t–111t
Hypodermis, 19, 177, 177f
I
Immune cells, 202
Indirect flash light, 33, 35f
Inferior alveolar artery, 159
Inflammation, 203
Infraorbital artery, 143
Infraorbital foramen, 143
Infraorbital hollowness, 52f
Informed consent, 61, 71, 76
Infraorbital hollowness, 52f
Injectable platelet-rich fibrin, 85. See also Platelet-rich fibrin injections.
Intrinsic aging, of skin, 100

J
Jawline, 50f
aging of, 158, 158f
high-risk zones in, 158, 159f
platelet-rich fibrin injections in, 158–161, 158f–161f
sagging of, 158
Jowl, 160, 161f
Juvenessence AD, 205, 205b

K
Keloid scars
laser treatment for, 184
microneedling for, 112, 113f
Keratinocytes, 107, 178, 187
Krypton/Nd:YAG laser, 188

L
Langerhans cells, 19, 203
Laser(s)
acne scars treated with, 185–186, 185f
biologic activity of, 176–183
carbon dioxide, 176
carbon dioxide laser, 176
classification of, 180, 182–183, 184f
in combination therapy, 228, 228f
dye, 180
epidermal lesions treated with, 187
Er:YAG, 176, 182, 188, 192
facial esthetics uses of, 176
fat ablation uses of, 189
gaseous, 180
hair removal uses of, 189–190
hemangiomas treated with, 186
history of, 175–176
illustration of, 179f
indications for, 183–195, 184f–188f, 191f–195f
krypton/Nd:YAG, 188
lipolysis uses of, 189
low-level laser therapy. See Low-level laser therapy.
microneedling versus, 109
Nd:YAG, 180, 182, 184, 187, 190
nonablative, 188
photobiostimulation uses of, 180
phototherapy uses of, 180–181
pigmented lesions treated with, 186f–187f, 186–188
platelet-rich fibrin and, in facial esthetics, 190–192, 191f–195f
pulsed dye, 184, 186, 190
Q-switched, 187, 190
scars treated with, 184–185, 184f–185f
skin rejuvenation uses of, 188–189
solid, 180
sun exposure after treatment with, 190
sunscreen use after, 187
therapeutic effects of, 181–182
tissue interactions, 180
vascular lesions treated with, 186
wound healing uses of, 176–178
Laser light, 179–181
Latanoprost sodium, 116
Lateral canthal lines, 10f, 46f, 142
LED devices. See Light-emitting diode devices.
Lens, 30–32, 30f–32f
Lesser occipital nerve anesthesia, 168
Leukocyte(s), 80, 83, 84f
Lipolysis, 189
Lipolase, 191–192, 192f
Liposuction, 167
Lip(s)
Lingostem, 204–205, 205f
Lingonberry stem cell extract, 204–205, 205f
Light(s)
Light-emitting diode devices, 183, 184f
Lightening, 33, 34f–35f
Lifestyle factors, 54
Lidocaine, for regional scalp block, 167
Leukocyte platelet-rich fibrin, 81, 82f
Leukocytes, 80, 83, 84f
Lesser occipital nerve anesthesia, 168
Lens, 30–32, 30f–32f
LED devices.
Light-emitting diode
See LED devices
Lateral canthal lines, 10f, 46f, 142
Latanoprost sodium, 116
topical application of, 93f
syringe injections of, 93, 94f
regenerative potential of, 87f, 87–88
syringe injections of, 93, 94f
topical application of, 93f
living skin equivalents, 203
LLLT. See Low-level laser therapy.
Local anesthesia, 130
Loupe glasses, 125
Lower face, platelet-rich fibrin injections in, 152–161, 152f–161f
Low-level laser therapy
acne vulgaris treated with, 185–186
devices, 183, 184f
history of, 176
limitations of, 181–182
liquid platelet-rich fibrin with,
170f–171f, 192, 194f–195f
photobiostimulation uses of, 181–182
skin rejuvenation uses of, 189
Low-speed centrifugation concept, 79, 84–85
L-PRF. See Leukocyte platelet-rich fibrin.
M
Macule, 57, 57f
Male pattern hair loss, 75b
MAL-PDT. See Methyl aminolevulinate photodynamic therapy.
Mandibular nerve, 17
Marionette lines
aging of, 156, 156f
anatomy of, 156, 156f
combination therapy for, 228, 228f
high-risk zones, 156
illustration of, 10f, 32f, 149, 150f
volumizing treatment of, 154–155, 155f
wrinkles around, 49f
Lipase, 191–192, 192f
Lipolysis, 189
Liquid platelet-rich fibrin
Alb-PRF versus, 220f
centrifugation protocols for, 86f
clinical uses of, 86
clotting of, 86
collection of, 91f, 104f
description of, 1
development of, 85–86
facial filler with, 93
hair loss treated with, 170f
horizontal centrifugation, 86
hyaluronic acid with, 222, 223f
illustration of, 127f
low-level laser therapy with,
170f–171f, 192, 194f–195f
mesotherapy by syringe injections using, 93, 94f
microneedling with, 92–93, 93f, 106f, 195f
protocols for, 92
regenerative potential of, 87f, 87–88
syringe injections of, 93, 94f
topical application of, 93f
Living skin equivalents, 203
LLLT. See Low-level laser therapy.
Local anesthesia, 130
Loupe glasses, 125
Lower face, platelet-rich fibrin injections in, 152–161, 152f–161f
Low-level laser therapy
acne vulgaris treated with, 185–186
devices, 183, 184f
history of, 176
limitations of, 181–182
liquid platelet-rich fibrin with,
170f–171f, 192, 194f–195f
photobiostimulation uses of, 181–182
skin rejuvenation uses of, 189
Low-speed centrifugation concept, 79, 84–85
L-PRF. See Leukocyte platelet-rich fibrin.
M
Macule, 57, 57f
Male pattern hair loss, 75b
MAL-PDT. See Methyl aminolevulinate photodynamic therapy.
Mandibular nerve, 17
Marionette lines
aging of, 156, 156f
anatomy of, 156, 156f
combination therapy for, 228, 228f
high-risk zones, 156
illustration of, 10f, 32f, 149, 150f
volumizing treatment of, 154–155, 155f
wrinkles around, 49f
Lipase, 191–192, 192f
Lipolysis, 189
Liquid platelet-rich fibrin
Alb-PRF versus, 220f
centrifugation protocols for, 86f
clinical uses of, 86
clotting of, 86
collection of, 91f, 104f
description of, 1
development of, 85–86
facial filler with, 93
hair loss treated with, 170f
horizontal centrifugation, 86
hyaluronic acid with, 222, 223f
illustration of, 127f
low-level laser therapy with,
170f–171f, 192, 194f–195f
mesotherapy by syringe injections using, 93, 94f
microneedling with, 92–93, 93f, 106f, 195f
protocols for, 92
regenerative potential of, 87f, 87–88
syringe injections of, 93, 94f
topical application of, 93f
treatment goals after, 100f
summary of, 118
stretch marks treated with, 118, 119f
vitiligo treated with, 114t–115t, 116
Melanin, 182, 189
Melanosomes, 186
Melasma, 114t–115t, 116
Melanocytes, 19–21
Methaldehyde, 182, 189
Methyl aminolevulinate photodynamic therapy, 3
Methyl aminolevulinate photodynamic therapy.
Methyl aminolevulinate
photodynamic therapy.
Methaldehyde, 182, 189
Methyl aminolevulinate photodynamic therapy, 3
Methyl aminolevulinate photodynamic therapy.
Methyl aminolevulinate
photodynamic therapy.
Methaldehyde, 182, 189
Methyl aminolevulinate photodynamic therapy, 3
Methyl aminolevulinate photodynamic therapy.
Methyl aminolevulinate
photodynamic therapy.
Methaldehyde, 182, 189
Methyl aminolevulinate photodynamic therapy, 3
Methyl aminolevulinate photodynamic therapy.
Methyl aminolevulinate
photodynamic therapy.
Methaldehyde, 182, 189
Methyl aminolevulinate photodynamic therapy, 3
Methyl aminolevulinate photodynamic therapy.
Methyl aminolevulinate
photodynamic therapy.
Methaldehyde, 182, 189
Methyl aminolevulinate photodynamic therapy, 3
Methyl aminolevulinate photodynamic therapy.
Methyl aminolevulinate
photodynamic therapy.
Methaldehyde, 182, 189
Methyl aminolevulinate photodynamic therapy, 3
Methyl aminolevulinate photodynamic therapy.
Methyl aminolevulinate
photodynamic therapy.
Methaldehyde, 182, 189
Methyl aminolevulinate photodynamic therapy, 3
Methyl aminolevulinate photodynamic therapy.
Methyl aminolevulinate
photodynamic therapy.
platelet-rich fibrin injections in, 149-151, 150f–151f
Smoothase application for, 191f
Nd:YAG lasers, 180, 182, 184, 187, 190
Neck
elastosis of, 10f
Merz esthetic scale for, 51f
Neck lines, 10f
Needles, for platelet-rich fibrin, 125, 125f–126f, 126t
Neoangiogenesis, 118, 178
Neovascularization, 99
Neutrophils, 118
Nodule, 57, 57f
Nonscarring alopecia, 166
Norwood scaling system, 72, 72f
Nose, 131
Omega-3, 206–207, 207f
Omegatri, 206–207, 207f
Ophthalmic artery, 140
Ophthalmic nerve, 17
Oral commissures, 49f
Orbicularis oculi muscle, 142, 152
Oxyhemoglobin, 182
Palpebromalar groove, 143, 145f
Panthenol, 204
“Papule,” 129f, 129t
Paralyzers, 1
Patient expectations, 52–53
PDGF. See Platelet-derived growth factor.
PDL. See Pulsed dye lasers.
PDO threads. See Polydioxanone threads.
Peptides, 206, 206f
Perioral lines, 10f
Perioral lines, 153–154, 153f
Perioral region, 152–156, 152f–155f
Periorbital melanosis, 114t–115t, 116
Periorbital region
aging of, 142f, 142–143
anatomy of, 142, 142f
high-risk zones of, 143
lateral canal lines, 142–143, 144f
palpebromalar groove, 143, 145f
platelet-rich fibrin injections in, 141–145, 142f–145f
tear troughs, 143–144, 144f
upper eyelids, 142
Peripheral blood, platelet-rich fibrin collection from, 88–91, 89f–91f
Philtral columns, 154
Photoablation, 180
Photoaging, Glogau classification of, 54, 56t
Photochemical effect, 180
Photodisruption, 180
Photodynamic therapy, 117, 180–181
Photographs
archiving of, 41
in hair loss consultation, 70–74, 70f–74f
taking of, 25
Photography
background of, 29, 29f
camera, 30–32, 30f–32f
documentation series, 28, 35–41
dermal fillers and, 130, 218
dermals, 218
dermal fillers and, 130
functions of, 28
general requirements for, 28–29
lighting of, 33, 34f–35f
marketing of, 41
Phototrichogram, 67
Pigmentary disorders. See also specific disorder.
laser treatment for, 186f–187f, 187–188
microneedling for, 113–116, 114t–117t
Plasma ablation, 180
Plasma heating, 218
Plastic surgery, 226, 227f
Platelet(s), 80, 83, 118
Platelet concentrates
advantages of, 1, 6
angiogenesis promotion by, 25, 95
centrifugal protocols for, 79
depression of, 2
growth factors in, 80–81
history of, 81–84
medicinal uses of, 80–81
platelet-rich plasma, 1
Platelet-poor plasma, 218
Platelet-rich fibrin
advantages of, 3, 53, 94
Alb-PRF. See Alb-PRF.
angiogenesis promotion by, 25
application of, 102, 103f–106f
treatment protocol for, 44, 60
type of, 127, 127f
ulcers treated with, 81
Platelet-rich fibrin injections
accessories for, 124–125, 125f–126f
BIO-PRF lift, 127–130, 128b–129b, 129f
complications of, 131
growth factors in, 80–81
intraepidermic, 129t
mesotherapy, 128, 129t
needles for, 125, 125f–126f, 126t
pretreatment considerations for, 124–125, 125f–126f
regional
cheek, 146–149, 146f–149f
dermals, 158–161, 158f–161f
description of, 127, 128b
forehead, 136–141, 139t–141f
glabella, 138–141, 139f–141f
jawline, 158–161, 158f–161f
lateral canal lines, 142–143, 144f
lips, 152–156, 152f–156f
definition of, 3
description of, 1
Tangential lift, 127–130
thermal effect, 180
Photothermal effect, 180
Photothermolysis, fractional, 187–188
Photothermolysis, 180
Photothermal effect, 180
Photothermal treatment, 180
Photothermolysis, fractional, 187–188
Photographic studio, 33
Photographic equipment, 31
Photographic techniques, 31
Photography
background of, 29, 29f
camera, 30–32, 30f–32f
documentation series, 28, 35–41
dermal fillers and, 130, 218
dermals, 218
dermal fillers and, 130
dermal fillers and, 130
functions of, 28
general requirements for, 28–29
lighting of, 33, 34f–35f
marketing of, 41
Phototrichogram, 67
Pigmentary disorders. See also specific disorder.
laser treatment for, 186f–187f, 187–188
microneedling for, 113–116, 114t–117t
Plasma ablation, 180
Plasma heating, 218
Plastic surgery, 226, 227f
Platelet(s), 80, 83, 118
Platelet concentrates
advantages of, 1, 6
angiogenesis promotion by, 25, 95
centrifugal protocols for, 79
growth factors in, 80–81
history of, 81–84
medicinal uses of, 80–81
platelet-rich plasma, 1
Platelet-derived growth factor, 5
Platelet-rich fibrin
advantages of, 3, 53, 94
Alb-PRF. See Alb-PRF.
angiogenesis promotion by, 25
application of, 102, 103f–106f
treatment protocol for, 44, 60
type of, 127, 127f
ulcers treated with, 81
Platelet-rich fibrin injections
accessories for, 124–125, 125f–126f
BIO-PRF lift, 127–130, 128b–129b, 129f
complications of, 131
growth factors in, 80–81
intraepidermic, 129t
mesotherapy, 128, 129t
needles for, 125, 125f–126f, 126t
pretreatment considerations for, 124–125, 125f–126f
regional
cheek, 146–149, 146f–149f
dermals, 158–161, 158f–161f
description of, 127, 128b
forehead, 136–141, 139t–141f
glabella, 138–141, 139f–141f
jawline, 158–161, 158f–161f
lateral canal lines, 142–143, 144f
lips, 152–156, 152f–156f
lower face, 152–161, 152f–161f
marionette lines, 156–157, 156f–157f
midface, 146–151, 146f–151f
nasolabial folds, 149–151, 150f–151f
perioral region, 152–156, 152f–155f
periorbital region, 141–145, 142f–145f
tear troughs, 143–144, 144f
temple, 132–135, 133f–135f
upper face, 132–145, 133f–145f
vascular “danger zones” of face, 131–132, 131f–132f
superficial intradermal “papule,” 129f, 129t
tips for, 127
topical anesthesia for, 125
Platelet-rich fibrin stand, 125, 126f
Platelet-rich plasma
advantages of, 3
autogenous, 80
composition of, 81
description of, 1
history of, 81–84
limitations of, 81
platelet-rich fibrin versus, 95
regenerative potential of, 87f, 87–88
PLL.A. See Poly-L-lactic acid.
PMMA. See Polymethyl methacrylate.
Point-by-point injection technique, for hair loss, 169, 169f
Polydioxanone threads, 1, 222–223, 224f
Poly-L-lactic acid, 222–223, 225
Polypropylene methyl methacrylate, 225
Posttreatment skin care. See Skin care products.
PRP. See Platelet-poor plasma.
PRF. See Platelet-rich fibrin.
PRFEDU facial esthetic photographic documentation series, 36, 39f–40f, 41
Procerus muscle, 138
Propionibacterium acnes, 185
Protective Day Cream, 206, 206f, 212, 212f, 212t
PRP. See Platelet-rich plasma.
Psychologic assessment, 54
Pulsed dye lasers, 184, 186, 190
Punch biopsy, of scalp, 72
Pustule, 57, 57f

Q
Q-switched lasers, 187, 190
Relative centrifugal force, 84
Rem, 179
Renewal Night Cream, 212–213, 213f, 213t
Retrograde linear threading injections in forehead, 138, 138f
in perioral region, 153
Retro-oculibularis oculi fat pad, 142
rhPDGF-BB. See Recombinant human platelet-derived growth factor-BB.
ROOF. See Retro-oculibularis oculi fat pad.
ROS. See Reactive oxygen species.

S
Scalp
anesthesia of, 166–168, 167f–169f
anterior, 168, 168f
biopsy of, 72
examination of, 67, 67f, 69f
innervation of, 167, 167f
photographic documentation of, 71, 71f
posterior, 168, 168f
regional block of, 167
topical anesthesia of, 166–167
Scar(s)
acne. See Acne/acne scars.
atrophic, 110t–111, 112, 184f
burn
illustration of, 101f
microneedling for, 110t–111t
formation of, 184
hypertrophic, 184
keloid
laser treatment for, 184
microneedling for, 112, 113f
laser treatment for, 184–185, 184f–185f
microneedling for, 109–112, 110t–112t
Scarring alopecia, 75b
Sebaceous glands, 20–21
Selective photothermolysis, 176
Serial point injections, 140
Sharps container, 125
Shedding, 64
Skin
aging. See Skin aging.
anatomy of, 176–177
blush, 57
brownish, 57
color of, 56f, 57
dehydration of, 2
dry, 57
efflorescence of, 57, 57f
ethnic differences in, 19–20
external factors that affect, 57
Fitzpatrick classification of, 54, 55f, 56f
functions of, 19
greasy, 57
hydration of, 58f
laser resurfacing of, 188–189
layers of, 19
light penetration into, 181f
manual assessment of, 58, 58f–59f
omega-3’s effects on, 207
rejuvenation of, 188–189
smoking effects on, 118
structure of, 19
texture of, 57
ultraviolet radiation exposure, 208
wrinkles of, 58, 60t
yellowish, 57
Skin aging
changes associated with, 2, 3b, 19–20
characteristics of, 2f, 2–3, 19–20
chronological, 100
ethnic differences, 19–20
extrinsic, 100
factors associated with, 2, 20, 99
healing or regeneration of, 1
intrinsic, 100
treatment options for, 2–3
Skin care products
Alaria esculenta extract, 205, 205b
antioxidants, 204
Arctic Čaga extract, 202–203, 203f, 208
arnica, 207–208
beta-glucan M, 205
Čuğvet. See Čuğvet skin care products.
description of, 201
lingonberry stem cell extract, 204–205, 205f
omegA-3, 206–207, 207f
peptides, 206, 206f
SYNT.C, 206, 206f
Skin markers, 124
Skin rejuvenation, 189, 202
Skin snap test, 58, 58f
SMAS. See Superficial musculoaponeurotic system.
Smoker’s lines, 153
Smoking, 118
Smoothlase, 184–185, 186f
Snap test, 58, 58f
Sodium ascorbyl phosphate, 205
Sodium carboxymethyl beta-glucan, 205
Soft tissue nasion, 11f
Solid lasers, 180
SOOF. See Suborbicularis oculi fat pad.
Stimulating Serum, 210, 211f, 211t
Stratum corneum, 19
Stretch marks, 118, 119f
Subcutaneous tissue, 19, 60t
Subnasale, 11f
Suborbicularis oculi fat pad, 142, 146
Subsurfacing, 188
Sun exposure, 2
Sunscreen, 187
Superficial intradermal “papule,” 129f
Superficial musculoaponeurotic system, 14, 147, 158, 225
Superficial temporal artery, 132, 134f
Supraorbital artery, 132
Supraperiosteal injections, 147f, 160f
Supratroclear artery, 137
SYN-TC, 206, 206f

T

Tear troughs, 143–144, 144f
Telangiectasias, 186
Telogen effluvium, 75b
Telogen phase, of hair growth, 21, 22f
Temple
 anatomy of, 132, 133f
 high-risk zones in, 134f
 hollows formation in, 133f, 134–135
 vertical supraperiosteal depot technique in, 134, 135f
Temporal fossa, 132
Temporalis muscle, 132
Terminal hairs, 20
Testosterone, 22
TGF-β1. See Transforming growth factor-β1.
TGF-β3. See Transforming growth factor-β3.

Tinea capitis, 75b
Tissue regeneration, 83
Tocopherol acetate, 204
Topical anesthesia, 125, 166–167
Traction alopecia, 75b
Transforming growth factor-β1, 83–84, 85f, 181
Transforming growth factor-β3, 107
Traumeel-S, 207
Treatment planning, 60, 76
Trichion, 11f
Trichometry, cross-sectional, 67–68, 68f–69f
Trichoscopy, 70, 70f
Trichotillomania, 75b
Trigeminal nerve, 17, 167

U

Ulcer, 57, 57f, 81
Ultrasound
 high-intensity focused, 225–226
 microfocused, 225
Ultraviolet light, 180, 182, 187
Ultraviolet radiation, 20, 100, 208
Upper eyelid hollows, 142

V

Vascular endothelial growth factor, 80, 84, 226
Vascular lesions, 186
VEGF. See Vascular endothelial growth factor.
Vein light, 125
Vellus hairs, 20
Verruca, 117
Vertical supraperiosteal depot technique
 in cheek, 148
 in chin, 160
 in temple, 134, 135f
Videodermoscopy, 70
Visual examination, 54, 55f, 56t, 57f
Vitamin B5, 204
Vitamin C, 204
Vitamin E, 204
Vitiligo, 114t–115t, 116

W

Wheat, 57, 57f
White lip, 154, 155f
Wide-angled lens, 32
Wound contraction, 178
Wound healing
 description of, 80
 lasers for, 176–178
 leukocytes’ role in, 83
 phases of, 118, 177–178, 178f
Wrinkles, 49f, 58, 60t

Y

Yellowish skin, 57

Z

Zygomatic bone, 146
Zygomaticofacial artery, 147
Zygomaticus muscle, 146, 146f