Dedication

This book is dedicated to Drs Daniel Green and Robert Amato, great mentors and educators who inspired our pursuit of excellence and love of evidence-based endodontics. May you all find your Drs Green and Amato.
Brooke Blicher, DMD
Private Practice Limited to Endodontics
White River Junction, Vermont
Clinical Instructor, Department of Restorative Dentistry and Biomaterials Sciences
Harvard School of Dental Medicine
Assistant Clinical Professor
Department of Endodontics
Tufts University School of Dental Medicine
Boston, Massachusetts
Instructor in Surgery
Geisel School of Medicine at Dartmouth
Hanover, New Hampshire

Rebekah Lucier Pryles, DMD
Private Practice Limited to Endodontics
White River Junction, Vermont
Assistant Clinical Professor
Department of Endodontics
Tufts University School of Dental Medicine
Clinical Instructor, Department of Restorative Dentistry and Biomaterials Sciences
Harvard School of Dental Medicine
Boston, Massachusetts

Jarshen Lin, DDS
Director of Predoctoral Endodontics
Department of Restorative Dentistry and Biomaterials Sciences
Harvard School of Dental Medicine
Clinical Associate, Department of Surgery
Division of Dentistry
Massachusetts General Hospital
Boston, Massachusetts
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>vi</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Evidence-Based Dentistry</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Microbiology</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>Pulpal and Periapical Anatomy and Physiology</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>Pulpal and Periapical Pathology</td>
<td>52</td>
</tr>
<tr>
<td>5</td>
<td>Medicine and Pharmacology</td>
<td>77</td>
</tr>
<tr>
<td>6</td>
<td>Diagnosis</td>
<td>105</td>
</tr>
<tr>
<td>7</td>
<td>Diagnosis of Non-Endodontic Disease Entities</td>
<td>132</td>
</tr>
</tbody>
</table>
We are pleased to offer the second edition of what became known as “The Orange Book” in certain circles to those seeking a literature-based discussion of endodontics. Whether this book will supplement your predoctoral or postdoctoral endodontics curriculum or guide self-study in general dental or specialty practice, we are proud to share the evidence-based why behind the diagnosis and delivery of endodontic care.

Evidence-based endodontics evolves as the literature changes. As new literature is published, including updated position statements and guidelines, practitioners must adapt their clinical practice. Many important updates have occurred in the field of endodontics research and clinical practice since the first edition was published in 2016. These updates have been incorporated into this second edition. That said, as the literature continues to advance, we encourage readers to stay abreast of changes to ensure delivery of the most up-to-date, evidence-based clinical care. This text provides the foundation to pursue this necessary continued self-study.
Evidence-Based Dentistry

The practice of evidence-based dentistry requires that providers make treatment decisions based on a comprehensive and constantly evolving evaluation of the bodies of research and literature in their field. Practitioners must sift through the available resources with a discerning eye. They must be able to justify their decisions and recommendations based on the highest-quality evidence available. Research published in peer-reviewed journals is considered to be unbiased and therefore most useful. Although textbooks and lectures are effective means of disseminating information, quality versions of these resources will refer back to primary resources in peer-reviewed journals. Consequently, it is imperative that providers familiarize themselves with the primary references cited in all examples. This chapter covers study design, measures of statistical significance and validity, and epidemiology. For a more in-depth review of research design and biostatistics, please refer to Hulley et al’s Designing Clinical Research and Glaser’s High-Yield Biostatistics, Epidemiology, and Public Health.
Study Design

Beyond citing peer-reviewed journals as the ideal reference source, certain study designs are generally considered more scientifically sound. The Oxford Centre for Evidence-Based Medicine (OCEBM) outlines a hierarchy of levels of evidence by study design, illustrated in Fig 1-1.

Systematic reviews, including meta-analyses, are considered the highest level of evidence, and their quality improves based on the compiled levels of evidence of the studies reviewed. Systematic reviews involve a comprehensive search and review of all of the literature on a topic, whereas a meta-analysis delves deeper by doing statistical analyses to make direct comparisons between studies. Depending on the variability of the statistics reported in the literature available on a topic, a meta-analysis may not be achievable.

Further algorithm-based criteria exist for rating the quality of evidence compiled in a systematic review or meta-analysis. The strength of recommendation taxonomy (SORT) grading system evaluates and categorizes systematic reviews and evidence-based clinical guidelines based on the quality, quantity, and consistency of the evidence included (Newman et al). Similarly, the Grading of Recommendation, Assessment, Development, and Evaluation (GRADE) system aims to summarize evidence addressing a question for use in producing systematic reviews and guidelines (Guyatt et al). Whether or not one of the above algorithms is included in a systematic review, it behooves the reader to take into account the quality of literature reviewed.

The Cochrane Collaborative produces systematic reviews that can be considered the gold standard for evidence-based medicine. The reviews are constantly updated with post-publication peer review and a strong conflict of interest policy. They may contain meta-analysis when homogenous data is available for comparison among the studies reviewed. Efforts are made by the Cochrane authors to focus on randomized controlled trials when possible to reduce effects of known and unknown confounders.
as well as publication bias. If a Cochrane Review is available on a subject, its conclusions are considered the ultimate evidence-based take on a topic.

Beyond reviews, randomized controlled trials are considered the highest level of evidence when considering clinical research studies (OCEBM). Randomized controlled trials involve a planned intervention on a diseased population with matched controls. These studies are both resource- and time-intensive and are consequently difficult to perform. Furthermore, ethical concerns often arise in the discussion of this study type. Prior knowledge of superior intervention outcomes cannot be denied to a diseased population, and it is considered unethical to study certain populations, such as children or the disabled.

Cohort studies are considered next best among the levels of evidence hierarchy (OCEBM). Cohort studies are prospective and longitudinal, and they measure the incidence of new cases of a disease while assessing risk or protective factors. These types of studies can be resource-intensive and are not practical for rare outcomes.

Case-control studies follow cohort studies in the OCEBM hierarchy. This type of study compares past risk factors and exposures of cases with disease and controls without disease in a retrospective fashion. These studies are often less expensive to perform, less time-intensive, and can be useful to study rare outcomes. They are considered lower quality due to recall bias, difficulties with misdiagnosis, and assignment of controls.

Publications of case series or case reports represent the second-lowest level of evidence for observational studies (OCEBM). They involve a simple presentation of an outcome without provision of a control. Their importance comes from the introduction of novel disease presentations or treatments for further investigation.

Lastly, expert opinions offer the lowest level of evidence. Their utility is limited in the justification of evidence-based diagnosis and treatment. Rather, they serve to introduce innovation and new techniques, as clinical empiricism is oftentimes the starting point for further higher-level research.

Statistics

Although a comprehensive review of biostatistics will not be addressed in this textbook, a review of the more commonly encountered concepts in biostatistics, particularly those encountered in later parts of this text, is presented here. Readers are encouraged to seek out further resources, particularly if questions arise during the reading of primary references.

Measures of statistical significance

The ultimate goal of research is to test a hypothesis. Although absolute statements regarding proof or disproof of a hypothesis cannot be made based on limited populations and study parameters, researchers look to determine the likelihood that results support the hypothesis. Similarly, determination of cause and effect is extremely difficult to prove, requiring large-scale randomized controlled trials with longitudinal
follow-ups. Most studies fall short of determining causation but can identify associations or relationships between two factors. It is important in quoting literature to never overstate results.

One way researchers can increase the odds of obtaining statistically significant results is to ensure that the sample population under study is both large and diverse enough to demonstrate outcomes. Although successful endodontic practice does not require an intimate understanding of the methods researchers use to determine the adequacy of sample sizes, familiarity with the concept of power to rule out errors in hypothesis testing is imperative. Well-designed research studies involve power calculations to ensure adequate sample sizes, and in critical review of literature articles, one should note if appropriate power calculations were made to justify the use of a particular sample size.

It is clear that the best means of measuring any parameter would be to draw data from every possible member of a population. As this is not realistic, study designs aim to draw a random sample that will be representative of the whole population. The larger the sample size, the more representative it will be of the varying parameters of the whole population. Sample size is inversely related to the likelihood for error (Glaser). Confidence limits, oftentimes described as a range between values called the confidence interval, are a means of inferring the likely range of a parameter factoring in possible errors related to a sample not being truly random and therefore representative of the whole population. The narrower the confidence interval, the more likely results are accurate, and the only way to narrow this is to increase sample size.

With samples selected and the experiment performed, results must be analyzed to determine their statistical relevance. The most common measure of statistical significance encountered in the endodontic literature is the P value. The P value refers to the likelihood of the outcome having occurred by chance. A P value less than or equal to .05 generally indicates statistical significance (Fig 1-2). In other words, with a P value of less than .05, the probability that the study results were obtained by chance is less than 5%. For example, in a retrospective case-control study performed by Spili et al investigating the outcomes of teeth with and without fractured nickel-titanium instruments, success was found in 91.8% of cases with retained fractured instruments compared with 94.5% success in controls. Statistical analysis using the Fisher exact test, a tool used to determine deviation from a null hypothesis, resulted in a P value of .49. This corresponds to a 49% chance that the difference in healing rates was due to chance. As the authors set the significance value at $P = .05$, the difference in healing rates obtained from the study was deemed statistically insignificant. In other words, the authors cannot prove that instrument separation led to a worse outcome.
Statistics

Measures of validity

When new testing modalities are compared to the current standard, the validity or accuracy of the new approach must be verified. Sensitivity, specificity, and predictive values provide the means by which validity can be confirmed (Fig 1-3). These values are often encountered in descriptions of pulp sensitivity tests. Mainkar and Kim’s systematic review and meta-analysis on the diagnostic accuracy of varying pulp sensitivity and vitality testing methodologies provides an excellent example in the discussion of validity measures.

Understanding validity measures requires familiarity with the concepts of both true positive and negative results and false positive and negative results (Table 1-1). True positive and negative results correctly identify individuals as diseased or healthy. False positive and negative results incorrectly identify the individual’s disease status.

Sensitivity is defined as the ability of a test to detect diseased individuals. It is calculated by comparing the number of true positives detected by the test with the total number of diseased subjects, including the true positives plus false negatives. In Mainkar and Kim’s meta-analysis, they found that laser Doppler flowmetry (LDF) was the most accurate means of diagnostic testing, whereas heat testing was the least accurate means. Pooled sensitivity was 0.98 for LDF and 0.78 for heat testing. In other words, LDF correctly identified teeth with pulp necrosis 98% of the time, whereas heat testing only did so 78% of the time (Mainkar and Kim).

Specificity is defined as the ability of a test to correctly identify a healthy individual. It is calculated by comparing the number of true negatives detected by the test with the total number of nondiseased subjects, including the true negatives and false positives. In Mainkar and Kim’s meta-analysis, pooled specificity was 0.95 for LDF and 0.67 for heat testing. In other words, LDF correctly identified vital teeth 95% of the time, whereas heat testing only did so 67% of the time (Mainkar and Kim).

<table>
<thead>
<tr>
<th>Test result</th>
<th>Disease present</th>
<th>Disease absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive</td>
<td>True positive</td>
<td>False positive</td>
</tr>
<tr>
<td>Negative</td>
<td>False negative</td>
<td>True negative</td>
</tr>
</tbody>
</table>
Predictive values describe the likelihood of the test to correctly identify health or disease. The positive predictive value is calculated as the proportion of true positives compared with positive results. The negative predictive value is calculated as the proportion of true negatives compared with negative results. Mainkar and Kim found positive predictive values of 0.94 versus 0.62 and negative predictive values of 1.00 versus 0.79 for LDF and heat testing, respectively. In other words, with LDF, a positive result (ie, no flow) corresponded to pulp necrosis 94% of the time, and a negative result (ie, flow) indicated the presence of vital pulp tissue 100% of the time, whereas with heat testing, a positive result (ie, no response to heat) correctly identified pulp necrosis only 62% of the time, and a negative result (ie, a response to heat) correctly identified vital pulp tissue only 79% of the time (Mainkar and Kim).

Measures of risk

Development of evidence to support any particular practice in medicine and dentistry relies largely on the determination of certain risk factors for a disease or outcome (Fig 1-4). Knowledge of a risk factor can aid practitioners in diagnosing disease, preventing disease, predicting future incidence and prevalence of a disease, and even establishing the cause of a disease (Glaser) (Fig 1-5). The measures of risk—including relative risk, attributable risk, and odds ratio—all measure the effect of being exposed to a risk factor on the risk of experiencing a particular outcome. The particular type of risk measurement used is study dependent.

Relative risk states how many times exposure to the risk factor itself increases the chance of a particular outcome (Glaser). Numbers needed to treat (NNT) is a derivative of relative risk, measuring risk reduction by an intervention, and allows for comparison of different treatments. As an example, the Oxford Pain Group League table showed that 800 mg ibuprofen provided demonstrably superior pain relief in the treatment of acute apical abscess or symptomatic apical periodontitis compared to other oral analgesics (Richards). In a meta-analysis compiling high-quality data from numerous other studies, they reported an NNT of 1.6 for 800 mg ibuprofen versus 2.2 for both combinations of 60 mg codeine per 1,000 mg acetaminophen and 5 mg oxycodone per 500 mg acetaminophen. In other words, 1.6 patients needed to be treated with 800 mg ibuprofen to achieve 50% pain reduction, whereas 2.2 patients needed to be treated with the narcotic preparations to achieve the same results (Richards). Ibuprofen is therefore a better drug for reducing the risk of endodontic pain. Attributable risk states the additional incidence of an outcome that is attributable to the risk factor in question and is determined by subtracting the incidence of disease in
nonexposed patients from that in exposed patients. It is equivalent to the difference in absolute risk between the two groups.

Both relative risk and attributable risk can be determined utilizing prospective cohort studies (Glaser). As previously discussed, these studies are not always feasible due to cost, time required, and their inefficiency in looking at rare outcomes. Therefore, retrospective case-control studies, wherein subjects with disease are compared to matched subjects without, are oftentimes more feasible. If a higher proportion of subjects with disease were exposed to a certain risk factor than those without disease, that risk factor can be associated with the disease.

Odds ratio is the measure of this proportional risk, comparing the odds that a case was exposed to the risk factor to the odds that a control was exposed to the same risk factor. An odds ratio of 1 indicates that a case is no more likely to have been exposed to the risk factor than a control and suggests that the risk factor is not associated with the disease. An odds ratio of greater than 1 suggests that the risk factor is associated, and an odds ratio of less than 1 suggests that the factor may, in fact, be protective. As an example, Sim et al found that pulpal floor fractures were associated with tooth loss. They reported an odds ratio of 11, meaning that teeth with pulpal floor fractures were 11 times more likely to be lost in the 5 years following treatment than teeth without identifiable pulpal floor fractures.

Epidemiology

Epidemiology involves the study of health and disease in populations. Descriptive statistics are used in epidemiology to determine the impact of health or disease measures on the population under study. Commonly reported descriptive statistics include both prevalence and incidence (Fig 1-6). Prevalence refers to the total number of people affected by a disease at a particular time point. Incidence refers to the number of new disease cases arising during a defined period of time.
Evidence-Based Dentistry

For example, Eriksen et al reviewed several European studies that reported the prevalence of apical periodontitis with a range from 26% to 70%. In other words, screening via periapical radiographs found that between 26% and 70% of patients sampled at one point in time had apical periodontitis. An additional example is found in a study by Lipton et al, which reported a 12% incidence of toothache in the US population in the preceding 6 months. Prevalence is a good measure for apical periodontitis because it develops slowly over a long time period, wherein it might be difficult to truly detect new cases. Incidence is a better measure for toothache because it generally has a rapid onset and decline, so a point-in-time assessment might miss many cases.

Epidemiologic methods can be used to measure the economic burden of a disease. Rampa et al investigated the economics of hospital visits related to periapical abscess (PA) via a retrospective analysis of the Nationwide Emergency Department Sample, a stratified database of hospital emergency department (ED) discharges in the United States. They found that the incidence of ED visits increased from 460,260 in 2008 to 545,693 in 2014. The mean charge for each patient discharged directly from the ED was $1,080.50, totaling $3.4 billion across the United States. When these patients were hospitalized following their PA-related ED visit, the mean hospitalization charges were $34,245, totaling $5.7 billion across the United States. The majority of these patients were uninsured (40%) or insured by state-run Medicaid (30%). Following this trend, Roberts et al reported a 2% incidence of dental diagnostic codes in patients visiting EDs in the United States, higher among patients with Medicaid than commercial insurance and highest among those aged 18 to 34 years.

Prognosis

Success rates of therapy are frequently utilized to justify treatment choices. Chapter 12 presents an in-depth discussion of endodontic success rates. Success can have multiple definitions depending on the context, and it is important to understand how each study defines success. Oftentimes, a distinction can be made between success, defined as the absence of symptoms and periapical pathology found on radiographic examination, and survival, referring to the absolute presence or absence of the tooth in the mouth without consideration of symptoms or pathology. When
examining primary sources, it is important to understand the authors' definition of success, as results will vary accordingly. Furthermore, the advent of newer imaging modalities like CBCT may alter our future definitions. Wu et al suggested that the lines between success and survival may be blurred once prognosis studies utilizing CBCT imaging become available because CBCT images will inevitably detect more lesions than traditional radiography. Of course, one must recognize that the above discussion, as well as most published research to date, relates to clinician and biology-based outcomes. Newer research in the field of patient-centered outcomes focuses on symptoms and economic factors rather than radiographic or histologic measures of healing (Montero et al, Riordain et al). All considerations are important for a comprehensive understanding of prognosis.

Bibliography

Introduction

Study design

Statistics

Epidemiology
Prognosis
Index

Page numbers followed by ‘f’ indicate figures; those followed by ‘t’ indicate tables

A

AAE. See American Association of Endodontists.
AAOS. See American Academy of Orthopaedic Surgeons.
Abscess(es) apical, 6, 123
brain, 320–321, 321f
characteristics of, 24, 89
historical description of, 15
immunoglobulin levels in, 63
microabscesses, 60
periapical, 8, 320
Abscess theory, of cyst formation, 66, 66f
Absolute risk, 7
Accessory canals, 40f, 40–41
Acellular cementum, 32
Acetaminophen, 6, 86, 88, 88t
Acetylcholinesterase, 33
Acquired immune system, 58, 59f
Acquired immunity, 59f
Actinomyces, 18
Actinomycosis, 18, 326
Acute apical abscess, 6, 123
Adaptive immune system, 58
A δ fibers, 32–33, 46, 59, 108, 132
Adjunctive irrigation techniques, 164f, 164–165
Adrenergic nerves, 33
Aggregatibacter actinomycetemcomitans, 15
Aging
cracked teeth secondary to, 265
pulpal changes related to, 35–36, 36f
Air emphysema, 320, 320f
ALARA principle, 114
Allergy
hypersensitivity reactions, 321, 321f
latex, 322
local anesthetics, 78
Allodynia, 111
Allografts, 180, 180f
Alloplasts, 180, 180f
Alveolar bone, 36
Alveolar fractures, 113, 229, 230–232, 238
Alveolus, 36
AM404, 86
Amalgam, 178–179, 179t
Amalgam retrofills, 296, 296f
Ameloblastomas, 67, 143
American Academy of Oral and Maxillofacial Radiology, 118, 118f
American Academy of Orthopaedic Surgeons, 84
American Association of Endodontists
apexification as defined by, 187
apexogenesis as defined by, 184
avulsions and, 250
Colleagues for Excellence, 79, 82, 118
cone beam computed tomography indications, 118, 118f
cracked tooth as defined by, 259
dental dams, 155
diagnostic terminology, 122, 122f
flare-ups as defined by, 323
fracture classification, 123, 124f, 231f, 326
fractured tooth as defined by, 259
implants and, 199
pulp capping as defined by, 184
pulp polyp as defined by, 125
pulpotomy as defined by, 186
radiographic examination guidelines, 233
silver points, 173, 173f
surgical operating microscope, 156
Trauma Guidelines, 226, 250
American Dental Association
code of ethics, 200, 200f
Council on Scientific Affairs, 81
t-Aminobutyric acid, 89
Amoxicillin, 83t, 325
Anachoresis, 13, 58
Analgesics, 85–88, 88t
Anemia, 90, 146
Anesthesia. See also Local anesthesia.
adjunctive techniques, 153–154, 154f
intraosseous, 319
mandibular, 152–153
maxillary, 151
pain control uses of, 155
pain source identified using, 112
palatal, 151
pulpal, 151
supplemental, 154
Anesthesia buffering, 154–155
Angiotensin converting enzyme 2 receptors, 93
Ankylosis, 231, 250
Anterior superior alveolar nerve, 46
Antibiotic(s)
- after avulsion injuries, 242
- bacterial resistance to, 81
- commonly used, 83t
- contraindications for, 79, 81f
- dosage of, 82, 83t
- drug interactions with, 83t
- flare-up prevention and, 80
- indications for, 79, 80f
- pathogen susceptibility to, 81
- in pregnancy, 95–96
- prophylactic use of, 82–85, 84f, 181, 325
- Antibiotic pastes, 191–192
- Anticoagulation, 90
- Anticurvature filing technique, 159, 160f
- Anxiolytics, 89
- Apexification, 158f–159f, 158–159, 241, 300
- Apexogenesis, 184, 237, 299f
- Apical abscesses, 6, 123
- Apical foramen
 - age-related changes in, 36
 - anatomy of, 40
 - arterial structures in, 34
 - constriction of, 40
 - electronic apex locator for location of, 158
 - major, 40
 - minor, 40
- Apical periodontitis
 - asymptomatic, 123
 - autotransplantation for, 297
 - bacteria and, 61–62, 62f, 63f, 228
 - biologic medications for, 92
 - bone resorption in, 64
 - cardiovascular disease and, 91
 - cellular responses in, 62
 - cytokines in, 63–64
 - diabetes and, 93
 - in end-stage renal disease, 96
 - estrogen deficiency and, 95
 - humoral responses in, 63–64
 - ibuprofen for, 6
 - immunomodulator drugs and, 94
 - intentional replantation for, 297–298
 - lymphocytes in, 62
 - maternal, 95
 - nonsurgical root canal therapy outcome affected by, 94, 290
- outcomes affected by, 290, 293
- pathology of, 61–62, 62f
- post-retreatment, 293, 294f
- post-treatment, 293f, 296f
- in pregnancy, 95–96
- prevalence of, 8
- pulpal disease progression to, 228
- pulpal necrosis and, 12f, 62f
- recurrent, 171
- requirements for, 295
- smoking and, 96–97
- symptomatic, 123
- Apical radiolucencies, 67, 68f, 293f
- Apical segments, 263
- Apical surgery, 177, 181, 295–296
- Apical tissue, 122
- Archaea, 18
- Arteriovenous shunts, 35
- Articaine, 78, 78t, 151, 155, 322–323, 323f
- As low as reasonably achievable principle. See ALARA principle.
- Asaccharolytic, 17
- Aspergillus, 19
- Asymmetric dimethylarginine, 64
- Asymptomatic apical periodontitis, 123
- Atherosclerosis, 91
- Attributable risk, 6–7
- Atypical facial pain, 136–138, 137f
- Atypical odontalgia, 136–137
- Atypical species, in endodontic infections, 18f, 18–19
- Augmentin, 83t
- Autogenous grafts, 180, 180f
- Autotransplantation, 183–184, 297–298
- Avulsions
 - description of, 233
 - in immature teeth with closed apex, 245–247
 - in mature teeth with closed apex, 244–245
 - periodontal ligament maintenance in, 242
 - radiographic findings in, 235
 - replantation of, 241–242, 245–246
 - storage of tooth, 242, 242f, 244, 250
 - treatment of, 236t, 241–247, 243f
- Azithromycin, 83t
- antibiotic resistance by, 81
- Apical periodontitis and, 61–62, 62f, 63f, 228
- carious, 52
- Gram-negative, 13, 20
- Gram-positive, 13, 20
- isolated species of, 16f, 16–17
- multiple-visit therapy effects on, 166
- in periapical lesions, 64–65, 65f
- Bacteroidetes phylum, 16
- Bay cysts, 66–67
- Beam-hardening artifacts, 116, 117f, 119, 262
- Benzodiazepines, 89, 96
- β agonists, 34
- Beta-hemolytic streptococci, 17
- Bioactive cements, 179, 179t
- Biofilms, 15, 15f, 162, 326, 326f
- Biologic width, 196, 196f
- Bisphosphonate-related osteonecrosis of the jaw, 90
- Bite testing, of cracked teeth, 265
- Bitewing radiographs, 113, 113f
- Biting pain, 111
- Black-pigmented bacteroides, 17, 18f
- Bleaching
 - internal, 193–194
 - intracoronal, 275–276
 - nonvital, 301
- Blood flow
 - to maxillary teeth, 43, 44f
 - pulpal, 34–36, 56, 59, 59f
- Blood-forming cells, 36
- Bone resorption, 64. See also Resorption.
- Borrelia burgdorferi, 94
- Botulinum toxin, 134
- Brain abscess, 140, 141f
- Breast cancer, metastatic, 140, 141f
- BRONJ. See Bisphosphonate-related osteonecrosis of the jaw.
- Brown tumor, 146
- Buccal infiltrations, 151, 153
- Buccal nerve, 46
- Buccal object rule, 114
- Buccal space, 22
- Buccal vestibule, 22
- Buffering anesthetics, 154–155
- Bupivacaine, 78t, 152, 155, 181
- Burs, 172, 177–178, 295, 319
- C3, 64
- C fibers, 32–34, 46, 59
- Calcifications, pulpal, 141, 142f
- Calcitonin gene-related peptide, 30, 34, 56, 59
Calcium hydroxide
apexification using, 187f, 187–188
description of, 17, 238, 250
external cervical resorption
 treated with, 279–280
extrusion of, in periapical areas, 316
fracture risks, 257
interappointment, 264
intradental uses of, 167–168
nonsurgical root canal therapy
 use of, 237
stem cells affected by, 191
Calcium hydroxide liners, 54, 237
Calcium silicate, 184
Calcium sulfate, 175
Canal isthmuses, 41
Cancellous bone, 36
Candida albicans, 19
Canine space, 22
Canines, 38t–39t
Cannabinoid receptors, 86
Carbamazepine, 136
Cardiac pain, 138
Cardiovascular disease, 91
Caries
pathophysiology of, 52–53, 53f
pre-eruptive, 284
pulpal inflammation caused
by, 52–53
Carrier-based obturation systems,
169–170, 173–174
Case reports, 3, 284
Case series, 3
Case-control studies, 3
Catechol-O-methyltransferase
gene, 109
Cause and effect, 3
Cavernous sinus thrombosis, 24
Cavit, 170
CBCT. See Cone beam computed
tomography.
CD4+ T cells, 94
CDJ. See Cementodentinal
junction.
Cefaclor, 170
CEJ. See Cementoenamel junction.
Cell(s)
apical periodontitis responses
by, 62
in periapical granulomas, 65–66
periapical pathology responses
by, 62, 62f
pulpal irritant responses by, 60
Cellular cementum, 32
Cementocytes, 32
Cementodentinal junction, 40, 158,
170, 178
Cementoenamel junction, 37, 120,
156, 192
Cementum
age-related changes in, 36
formation of, 32
tears of, 139, 139f
Central incisors, 38t–39t
Cephalexin, 83t
Cephalexin, 83t
Cervical precementum, 276
Cervical root fractures, 257
Cermovain, 138
CGRP. See Calcitonin gene-related
peptide.
CH. See Calcium hydroxide.
Chemotherapeutics, 92
Chief complaint, 106
Children, traumatic dental injuries
in, 226
Chlorhexidine gluconate, 163–164,
164f, 167–168, 168f
Chloroform, 172
Chondroitin sulfate, 32
Chronic apical abscess, 123
Chronic maxillary sinusitis, 96
Chronic renal failure, 96
CHX. See Chlorhexidine gluconate.
Ciprofloxacin, 191
Clarithromycin, 83t
Clark's rule, 114
Clindamycin, 83t, 85
Clinical examination, 105–112
elements of, 106f
objective examination. See
Objective examination, subjective examination, 106
CMV. See Cytomegalovirus.
Coagulative necrosis, 185
Cochrane Collaborative, 2–3
Codeine, 6
Coefficients of thermal expansion,
265
Cohort studies, 3
Cold hypersensitivity, of cracked
teeth, 265
Cold testing, 107–108
CollaCote, 175
Collagen, 32
Collagen fibrils, 31
Common carotid artery, 43
Complications
air emphysema, 320, 320f
allergy, 321–322
brain abscess, 320–321, 321f
endodontic surgery, 181–182
extrusion of materials beyond
apex, 316f–317f, 316–318
failures, 325–326
flare-ups, 323–325, 325f
flare-ups.
instrument separation,
309f–311f, 309–311
intraoperative, 119
intratreatment, 309–323
local anesthesia adverse
reactions, 322–323, 323f
perforations, 311–314,
312f–314f
posttreatment, 323–328
regenerative endodontics, 193,
193f
sodium hypochlorite accident,
314–315, 315f
thermal injuries, 318–319, 319f
traumatic dental injuries,
249–251, 252f
Comprehensive medical history,
106
COMT gene. See Catechol-O-
methyltransferase gene.
Concussion, 232, 234f, 236f, 239,
241
Condensing osteitis, 123, 145
Cone beam computed tomography
advantages of, 115, 117f
artifacts on, 116, 117f, 119f
beams-hardening artifacts on,
116, 117f, 119, 262
computer algorithms, 115
costs of, 116
nonsurgical root canal therapy
outcomes evaluated
using, 238
posttreatment, 323–328
regenerative endodontics, 193,
193f
sodium hypochlorite accident,
314–315, 315f
thermal injuries, 318–319, 319f
traumatic dental injuries,
249–251, 252f
Index
335
vertical root fractures on, 235, 262, 262f
working length determination using, 157
Confidence interval, 4
Confidence limits, 4
Confidentiality of patient records, 200
Contact dermatitis, 321
Contrast-enhanced microCT, 258
Coronal discoloration, 274–275, 275f
Coronal flaring, 160, 161f
Coronal fractures, 53, 124, 266, 290
Coronal leakage, 195, 326, 326f
Coronally repositioned flaps, 177
Coronary artery disease, 91
Cortical bone, 36
COVID-19, 92–93
Cracked tooth/teeth
aging as cause of, 265
apical extension of, 267
bite testing of, 265
clinical presentation of, 265
cold hypersensitivity associated with, 265
cone beam computed tomography of, 266
crack depth and, 266
crestal bone loss associated with, 267f
definition of, 259
description of, 199
diagnosis of, 265
diagnostic treatment of, 266, 290
imaging of, 266
nonbonded restorations and, 265
nonsurgical root canal therapy of, 267
periodontal bone loss associated with, 266
predisposing factors for, 257, 265
prevalence of, 257
probing depths associated with, 266
prognostic factors for, 267f
pulp necrosis effects on, 266
symptoms of, 264
treatment planning of, 265
Cracked tooth syndrome, 53, 199, 199f, 259, 264
Cracks, fractures versus, 260
Craze lines, 231, 260. See also Infractions.
C-reactive protein, 64
Cribriform plate, 36
Cross-fence capillaries, 35
Crown fractures, 234, 234f, 236, 260
Crown lengthening, 291
Crowned teeth, 54, 55f
Crown-root fractures, 124f, 231f, 232, 236f, 238, 260
Cryotherapy, 184
C-shaped root canals, 41–43, 43f
Cyclooxygenases, 86
Cysts
nasopalatine duct, 67, 143, 143f
periapical, 66f, 66–67, 114
Cytokines
in apical periodontitis, 63–64
in bone resorption, 64
Cytomegalovirus, 16, 19
Cytotoxic T cells, 62
Cytotoxins, 318
D
Dam. See Dental dams; Rubber dams.
Danger space, 24
DE. See Dens evaginatus.
Deafferentation pain, 137
Decoronation, 250–251, 281
DEJ. See Dentinoenamel junction.
Denosumab, 277
Dens evaginatus, 41–42, 192f
Dens invaginatus, 41, 119
Dental dams, 155, 290
Dental history, 106
Dental pulp. See Pulp.
Dentin
anatomy and physiology of, 30–31
caries penetration into, 53f
classification of, 31, 31f
dehydration of, 54
dysplasia of, 142
embryology of, 30–31
facts about, 31f
odontoblast secretion of, 30
radio, 261, 300
sensitivity of, 33f
Dental hypersensitivity, 132
Dental tubules, 31, 33, 61, 178
Dentinoenamel junction, 31
Dentinogenesis, 29, 35
Dentinum. See also Teeth; specific teeth.
arterial supply to, 43
neural pathways to, 45–46, 46f
primary. See Primary dentition.
Dermatan sulfate, 32
Dexamethasone, 154
Di. See Dens invaginatus.
Diabetes, 93–94
Diagnosis
clinical examination for. See Clinical examination.
fractures. See Fracture(s).
periapical, 122f, 122–123
periapical lesions, 114
periodontal-endodontic lesions, 124–125, 125f
pulpal, 122, 122f
radiographic examination for. See Radiographic examination.
Dialister invisus, 21
Diazepam, 89
Diclofenac sodium, 154
Digital radiography, 114
DNA checkerboard analysis, 13
Doxycycline, 242
Drug interactions with analgesics, 88f
with antibiotics, 83t
Dual wavelength spectrophotometry, 110
E
EAL. See Electronic apex locators.
EBV. See Epstein-Barr virus.
ECR. See External cervical resorption.
Ectodermal cells, 29
EDTA, 158, 163, 191
Ehlers-Danlos syndrome, 142, 142f
EIRR. See External inflammatory root resorption.
Electric pulp testing, 55, 107, 109, 110f, 151, 230
Electronic apex locators, 157f, 157–158
Embryology of teeth, 29–30, 30f
EMD proteins. See Enamel matrix derivative proteins.
Emphysema, air, 320, 320f
Enamel
embryology of, 29–30
fractures of, 260
inner epithelium of, 29–30
outer epithelium of, 29–30
Enamel infraction, 231, 236f, 237
Enamel matrix derivative proteins, 183
Enamel-dentin-fractures, 260
Enamel-dentin-pulp fractures, 260
Endocarditis, 84, 84f
Endodontic disease in primary dentition, 302
radiographic entities that resemble, 141–147
Endodontic flare-ups. See Flare-ups.

Endodontic infections

anatomical distribution of, 21–25
atypical species in, 18f, 18–19
consequences of, 24
historic perspectives on, 58
isolated species in, 16f, 16–17
overview of, 14
pathways of, 22–23, 24t
patterns of spread for, 22–23,
23f, 24t
polymicrobial, 14
primary, 20f, 20–21
secondary, 20f, 20–21
viruses, 19, 19f

Endodontic infections

anatomical distribution of, 21–25
atypical species in, 18f, 18–19
consequences of, 24
historic perspectives on, 58
isolated species in, 16f, 16–17
overview of, 14
pathways of, 22–23, 24t
patterns of spread for, 22–23,
23f, 24t
polymicrobial, 14
primary, 20f, 20–21
secondary, 20f, 20–21
viruses, 19, 19f

Endodontic lesions, 124

Endodontic microbiology. See Microbiology, endodontic.

Endodontic surgery. See also Surgical root canal therapy.

blood loss during, 175
calcium sulfate use in, 175
complications of, 181–182
follow-up care after, 194
grafts, 180–181
guided surgical approaches, 174–175
healing after, 182, 182f
hemostasis for, 175, 176f
indications for, 174
membranes, 180–181
nonsurgical retreatment versus,
174
outcomes of, 295–297,
296f–297f
postoperative management of, 181
resection, 177–178
retrofilling, 178–179, 179f
retroreparation, 177–178
soft tissue healing after, 182
surgical site exposure, 178–177
suturing, 180
tools and techniques used in, 174

Endodontic treatment

apexification, 187f–188f,
187–189, 300
bacteremias after, 82–83
cracked teeth treated with, 266
digital radiography uses in, 114
failure of, 325–326
follow-up care, 194
fracture risks, 257
implants versus, 198–199
internal bleaching, 193–194
local anesthesia for, 151–155,
154f
nonsurgical retreatment, 171–
173, 172f–174f, 294, 294f
nonsurgical root canal therapy. See Nonsurgical root canal
therapy
persistent pain after, 327–328,
328f
pulp capping, 184–186, 185f, 298
pulpal necrosis treated with,
240–241
pulpotomy, 186–187, 187f, 299
regenerative endodontics, 189–
193, 190f, 192f–193f, 301f
in restored teeth, 54, 55f
success rates for, 288
surgery. See Endodontic surgery.
dermatological injuries treated
with, 237
Endodontically treated teeth. See also Previously treated teeth.
nonsurgical retreatment in,
171–173, 172f–174f, 294,
294f
periodontal disease effects on, 125
restoration of biologic width, 196, 196f
implants for, 198–199
indications for, 195
posts, 197–198, 198f
reasons for, 194–195, 196f
success rates for, 289
EndoSequence Bioceramic Root Repair Material putty, 296
Endosolv R, 172
Endotoxin, 13, 13f
EndoVac system, 165
End-stage renal disease, 96
Enterococcus faecalis, 17, 17f,
20–21, 163, 167–168
Epidemiology, 7–8
Epinephrine, 78, 78t, 171, 175
Epithelial rests of Malassez, 66
Epstein-Barr virus, 16, 19
EPT. See Electric pulp
testing.
Erythromycin, 83t
Estrogen deficiency, 95
ETEST, 81
Ethics, 200, 200f
Eugenol, 170–171, 171f, 317
Evidence, levels of, 2f
Expert opinions, 3
External apical root resorption,
251
External carotid artery, 43
External cervical resorption
calcium hydroxide for, 279–280
coronary discolouration
associated with, 274–275,
275f
denosumab and, 277
description of, 19, 273–274
diagnosis of, 275
editologies of, 275–277, 277f
external approach to, 278–280,
279f
geneic predisposition to, 276–277
Heithersay's classification of,
277f, 277–278
herpes virus and, 276
idiopathic, 276
imaging of, 275f
intentional replantation for,
280, 280f
internal approach to, 279–280
intracoronal bleaching and, 276
nonsurgical root canal therapy for, 278, 279f
orthodontics as cause of, 275–276
Patel's classification of, 278, 278f
pathogenesis of, 274, 274f
pericoronal resorption-resistant
sheet in, 274
periodontal therapy and, 276
phases of, 274
risk factors for, 277f
treatment of, 278–281,
279f–280f
trichloroacetic acid for, 278–280
untreatable, 280, 280f
varicella zoster virus and, 276
viruses associated with, 276
External inflammatory root resorption, 237, 250, 252f, 281,
281f
External jugular vein, 44
External root resorption antibiotics for prevention of,
242
inflammatory, 281, 281f
orthodontic treatment and,
55–56
Extracellular connective tissue, 32
Extracuticular infections, 15
Extremophiles, 18
Extrusive luxation, 233, 234f, 236t,
239
F
Facial artery, 43
Failure of endodontic therapy,
325–326
Falls, 227
Index

False negative, 5, 5t
False positive, 5, 5t
Fascial spaces, 21–22, 24, 24t, 47
FCOD. See Florid cemento-osseous dysplasia.
Federal laws, 200
Ferric sulfate, 302
Ferrule effect, 196–197
Fibro-osseous tissue, 274
Fibrovascular tissue, 274
Firmicutes phylum, 16, 21
FISH. See Fluorescent in situ hybridization.
Fisher exact test, 4
Flaps, 180
Flare-ups
antibiotics for prevention of, 80
definition of, 324–325
in diabetes, 93
factors associated with, 324f
incidence of, 68, 323
local anesthetics for, 325
management of, 325, 325f
predictors for, 324
risk factors for, 324f
Florid cemento-osseous dysplasia, 143, 145–146, 146f
Fluorescent in situ hybridization, 13
Focal infection theory, 12, 58
Focused examination, 107
Foramen ovale, 46
Foramen rotundum, 45
Foreign body reaction, 317
Formaldehyde, 172, 186
Formocresol, 186, 302
Fracture(s)
alveolar, 113, 229, 232, 238
categories of, 123, 124f
cervical root, 257
complicated, 231–232, 234f, 260
coronal, 53, 124, 266, 290
cracks versus, 260
crown, 124f, 231, 231f, 234f,
236t, 260
crown-root, 231f, 232, 236t,
238, 260
description of, 326
diagnostic testing for, 112, 258
enamel, 260
enamel-dentin, 260
enamel-dentin-pulp, 260
endodontic treatment as cause of, 257
longitudinal, 123, 261, 263
as pulpal irritant, 53
radiographic findings, 234f,
234–235
root. See Root fractures.
staining of, 112
terminology associated with,
259–260
traumatic, 257, 259f, 259–260
types of, 123, 124f
uncomplicated, 231–232, 234f,
260
vertical root. See Vertical root fractures.
Fracture necrosis, 266–267, 267f
Fractured tooth, 259. See also Fracture(s).
Fungal infections, 18
G
GAGs. See Glycosaminoglycans.
GCS. See Glasgow Coma Scale.
Gelfoam, 175
Generalized radiographic changes, 112
Gentlewave System, 310
Glasgow Coma Scale, 229
Glass-ionomer cements, 170, 278
Glide path maintenance, 158–159
Glycosaminoglycans, 32
Gnotobiotic, 11
Gow-Gates technique, 152
Grading of Recommendation, Assessment, Development, and Evaluation (GRADE) system, 2
Grafts, 180–181
Gram-negative bacteria, 13, 20
Gram-positive bacteria, 13, 20
Granulomas, 65–66, 66f, 67, 114
Greater palatine nerve, 46
Growth factors, 29, 190
“Guided access” technology, 157
Guided surgery, 174–175
Gutta-percha, 108–109, 109f, 110f,
119, 172, 179, 238, 261, 296, 317–318, 322
Health Insurance Portability and Accountability Act, 200
Heat testing, for pulp sensitivity, 6, 108–109, 110f
Helper T cells, 62, 62f
Hemicrania continua, 135
Hemoglobin A, 90
Hemoglobin A1c, 93
Hemopoietic cells, 36
Hemostasis, 175, 176f
Hepatitis, 94
Herpes simplex virus, 19, 276
Herpes zoster, 146
HERS. See Hertwig’s epithelial root sheath.
Hertwig’s epithelial root sheath, 30, 40, 187
Heterotopic pain, 138
HHV. See Human herpesvirus.
Highly active anti-retroviral therapy, 94
HIPAA. See Health Insurance Portability and Accountability Act.
HIV, 19, 94
Hodgkin lymphoma, 95
Hollow tube theory, 58
Horizontal incisions, 176–177, 177f
Horizontal root fractures, 123,
124f, 263f, 263–264
HPV. See Human papillomavirus.
HSV. See Herpes simplex virus.
Human herpesvirus, 19
Human immunodeficiency virus. See HIV
Human papillomavirus, 19
Hyaluronate, 32
Hypercementosis, 145
Hyperparathyroidism, 147
Hyperplastic pulpitis, 125
Hypersensitivity reactions, 321,
321f
Hypothesis testing, 3
I
IADT. See International Association of Dental Traumatology.
Iatrogenic perforations, 311–314
Ibuprofen, 6, 85–87, 88t, 107
ICD. See Implantable cardiac defibrillators.
ICOP. See International Classification of Orofacial Pain.
ICRR. See Invasive cervical root resorption.
Immature necrotic teeth, 300–301,
301f
Immunoglobulins
in apical periodontitis, 63
in periapical cysts, 66
Immunologic theory of cyst formation, 66, 66f
Implantable cardiac defibrillators, 158
Implants, 198–199
Incidence, 7–8, 8f
Incisions, 176–177, 177f
Incisive nerve, 46
Incisors, 38t
Infection
endodontic. See Endodontic infections.
historic perspectives on, 58
non-endodontic, 139–141
persistent, 325–326
primary, 20f, 20–21
secondary, 20f, 20–21, 325–326
Zones of Fish for containment of, 12, 12f
Infective endocarditis, 84, 84f
Inferior alveolar artery, 43
Inferior alveolar nerve anesthetic block of, 85, 89, 152–153, 155
description of, 46
radiographic images of, 121f
Inferior alveolar vein, 44
Infiltrations, 151
Inflammatory bowel disease, 94
Informed consent, 150
Infractions, 123, 124f, 231, 236t, 237, 259–260
Infraorbital artery, 43
Inhalational anxiolytics, 89
Innate immune system, 58, 59f
Inner enamel epithelium, 29–30
Instruments/instrumentation
description of, 159–161
irrigation with, 161–164, 162f
master apical file, 161
nickel titanium, 309, 309f
rotary, 160, 309
separation of, 309f–311f, 309–311
smear layer created by, 161
stainless steel, 309
ultrasonic, 319
Intentional replantation, 183–184, 261, 263, 266
Interleukin-1α, 63
Interleukin-1β, 60, 63
Interleukin-2, 91
Interleukin-6, 63–64
Interleukin-8, 63
Interleukin-10, 63
Intermediate Restorative Material, 170
Internal bleaching, 193–194
Internal carotid artery, 43
Internal jugular vein, 44
Internal root resorption, 125, 250–251, 252f, 272–273, 273f
International Association of Dental Traumatology, 235–237, 259, 263
International Classification of Headache Disorders, 134
International Classification of Orofacial Pain, 133
International Headache Society, 133–134
Intracanal medicaments, 167–168, 191–192
Intracoronal bleaching, 233, 234f, 236t, 240, 240f
Invasive cervical root resorption, 273
Invasive root resorption, 250–251
IRM. See Intermediate Restorative Material.
Irreversible pulpitis, 58, 60, 79–80, 86, 92, 122, 155, 237, 266, 284f, 299
Irrigation
adjunctive techniques for, 164f, 164–165
irrigants used in, 15, 161–164, 162f, 190–191
passive ultrasonic, 165
sodium hypochlorite for, 162f, 162–163
Irritants, pulpal. See Pulpal irritant(s).
Isolated species, in endodontic infections, 16f, 16–17
J
Jaw
bisphosphonate-related osteonecrosis of, 90–91
malignancies of, 144, 144f
radiolucencies of, 145, 145f
radiopacities of, 145–146, 146f
Kidney stones, 96
Kovanaze, 151
K-shell absorption edge, 116
L
β-Lactams, 81, 83t
Lactobacillus, 21, 52
Langerhans cell histiocytosis, 143
Laser Doppler flowmetry, 5–6, 110
Lateral canal, 40, 40f
Lateral condensation, 170
Lateral incisors, 38t–39t
Lateral luxation, 233, 234f, 236t, 239
Lateral pharyngeal space, 24–25
Latex allergy, 322
Laws, 200
LDF. See Laser Doppler flowmetry.
Leakage, coronal, 325
Lesser palatine nerve, 46
Leukocytes, 60
Levels of evidence, 2f
Lidocaine, 78t, 95, 152, 155
Lingual artery, 43
Lingual nerve, 46, 48
Local anesthetics. See also Anesthesia.
adverse reactions to, 322–323, 323f
agents used in. See Local anesthetics.
buffering of, 154–155
mandibular anesthesia, 152–153
maxillary anesthesia, 151
Local anesthetics
allergies to, 78
duration of action, 78
flare-ups managed with, 325
hemostatic uses of, 175
indications for, 77
lipid solubility of, 78
paresthesias after, 322
properties of, 78
types of, 78f
Localized radiographic changes, 112
Longitudinal root fractures, 123, 261, 263, 266
LPS. See Lipopolysaccharide.
Ludwig angina, 24
Luxation-type injuries
follow-up of, 241
Index

radiographic findings in, 235
treatment of, 236, 239–241
types of, 232–233
Lyme disease, 94–95
Lymph nodes, 45, 45f
Lymphatics
maxillofacial, 45, 45f
pulpal, 35
Lymphocytes, 62
Lymphoma, 95

Lyme disease, 94–95
Lymph nodes, 45, 45f
Lymphatics
maxillofacial, 45, 45f
pulpal, 35
Lymphocytes, 62
Lymphoma, 95

Macrolides, 83t
MAF. See Master apical file.
Magnification, 156, 156f
Malignancies, 144, 144f
Mandibular anesthesia, 152–153
Mandibular nerve, 46, 318
Mandibular osteomyelitis, 140f
Mandibular teeth
 canines, 39t
 incisors, 39t
 infections of, 23, 24t
 innervation of, 46
 molars, 39t
 premolars, 39t
 surgical anatomy of, 47
 venous drainage from, 44
Masserann technique, 173
Master apical file, 161
Matrix metalloproteinase 9, 60
Maxillary anesthesia, 151
Maxillary artery, 43
Maxillary nerve, 46
Maxillary sinus
maxillary root protrusion into, 47
mucositis of, 121f
surgical anatomy of, 47
Maxillary sinusitis of endodontic origin, 96
Maxillary teeth
 canines, 39t
 incisors, 39t
 infections of, 23, 24t
 innervation of, 46
 molars, 39t
 premolars, 39t
 surgical anatomy of, 47
 venous drainage from, 44
Maxillary vein, 44
Maxillofacial region
anatomy of, 43
arterial supply to, 43, 44f
lymphatics of, 45, 45f
neuroanatomy of, 45–46
surgical anatomy of, 47
venous drainage, 44

Measures
of statistical significance, 3–4
of validity, 5f, 5–6
Medical history, 106
Medication(s).
See Pharmacology; specific medication.
Medication-related osteonecrosis of the jaw, 90–91
Membranes, 180–181
Menopause, 95
Mental foramen, 47, 113, 120, 120f
Mental nerve
anesthetic blockade of, 152
description of, 46
Mental space, 22
Mepivacaine, 78t
Mesenchymal cells, neural crest-derived, 29
Mesial root isthmus, 41
Meta-analyses, 2
Metastases, 140, 141f, 144, 144f
Methotrexate, 90
Methylene blue dye, 178, 265
Metronidazole, 81–82, 83t, 191
Microabscesses, 60
Microbial succession, 20, 60
Microbiology, endodontic
history of, 12
overview of, 11
research methods, 13
Microbiome, 14
MicroCT, 115
Microleakage, 170
Microscope, surgical operating, 156, 156f, 295, 311
Middle superior alveolar nerve, 45
Migraine headaches, 134–135
Mineral trioxide aggregate
apexification using, 188, 188f, 300, 300f
perforating resorptive defects treated with, 273
perforation repair using, 313–314, 314f
properties of, 179t
pulp capping using, 184–185, 298
pulpal healing promoted with, 54
pulpotomy using, 186–187, 187f, 299, 302
retrofilling uses of, 178–179, 192, 264, 296
Minocycline, 191
MMP9. See Matrix
metalloproteinase 9.
Mobility assessments, 111, 112f
Molars, 38t–39t
Molecular research, 14
Molecular techniques, 13
Mouth guards, 252
MRONJ. See Medication-related osteonecrosis of the jaw.
MSEO. See Maxillary sinusitis of endodontic origin.
MTA. See Mineral trioxide aggregate.
Mucositis, 96, 121, 121f
Multiple myeloma, 95
Multiple-visit therapy, 165–167, 324
Myofascial pain, 134
Myofascial pain syndrome, 134

Nasopalatine duct cysts, 67, 143, 143f
National Dental Practice-Based Research Network study, 265
Necrosis. See Fracture necrosis: Pulpal necrosis.
Negative predictive value, 5f, 6
Neural crest-derived mesenchymal cells, 29
Neuralgia-inducing cavitation osteonecrosis, 137
Neurofibromatosis, 146
Neurokinin A, 34
Neuropathic pain, 135–136, 136f
Neuropeptide Y, 30, 34
Neuropeptides, 59
Neurovascular pain, 138
Next-generation sequencing, 13
NGS. See Next-generation sequencing.
Nickel titanium alloys, 160
Nickel titanium instruments, 309, 309f
NICO. See Neuralgia-inducing cavitation osteonecrosis.
Nitrous oxide, 89, 96
NMDA receptors, 89
NNT. See Numbers needed to treat.
Nonbonded restorations, 265
Non-endodontic diseases
headaches, 134–135
pain. See Pain.
Non-endodontic infections, 139–141
Non-Hodgkin lymphoma, 95
Noninfectious swelling, 141
Nonodontogenic pain, 327
Nonresorbable membranes, 180–181
Nonsteroidal anti-inflammatory drugs
Index

drug interactions, 88t
mechanism of action, 86
respiratory disease exacerbated by, 88
Nonsurgical retreatment, 171–173, 172f–174f, 293–294, 294f, 297
Nonsurgical root canal therapy
access preparation, 156–157
cracked teeth treated with, 267
effects on external cervical resorption treated with, 278, 279f
failure after, 294f
glide path maintenance, 158–159
in HIV patients, 94
instrumentation, 159–161
intracanal medicaments, 167–168, 168f
intraoperative complications of, 292
irrigation, 161–164
isolation, 155
magnification, 156, 156f
multiple-visit therapy, 165–167, 324
obturation, 169f, 169–170, 173
outcomes of, 289t, 289–293, 293f
patency, 158–159, 159f
prognostic rates for, 289t, 289–293, 293f
single-visit therapy, 165–167, 166f
temporary restorations, 170–171
tooth extraction after, 92
working length determination, 157f, 157–158
Nonvital bleaching, 301
NPY. See Neuropeptide Y.
NSAIDs. See Nonsteroidal anti-inflammatory drugs.
NSRCT. See Nonsurgical root canal therapy.
Numbers needed to treat, 6
Nutritional deficiency theory, of cyst formation, 66, 66f

Objective examination
cold testing, 107–108
electric pulp testing, 107
elements of, 107
focused examination, 107
intraoral examination, 107
periodontal examination, 111, 111f
periodontal ligament assessment, 111
pulp sensitivity tests, 107–109
Oblique root fractures, 263
Obturation
nonsurgical root canal therapy uses of, 169f, 169–170, 173
overextension of materials used in, 317, 317f
Occusal adjustment, 57, 57f
Occusal forces, 57
Occupational Health and Safety Administration, 200
OCEBM. See Oxford Centre for Evidence-Based Medicine.
Ochsenbein-Luebke technique, 176
Odds ratio, 7
Odontoblasts, 30, 282
Odontoclasts, 271
Odontogenesis, 29, 186
Odontogenic pain, 86, 90, 107
Oehlers’s dens invaginatus classification, 41, 42f
OHSAA. See Occupational Health and Safety Administration.
Ophthalmic vein, 44
Opioid receptors, 86
Orofacial trauma, 227, 247
Orthodontic treatment
external cervical resorption caused by, 275–276
pulpal tissue affected by, 55f, 55–56
root resorption and, 56
Osteoblasts, 64
Osteocalcin, 30
Osteoclastogenesis, 274
Osteoclasts, 64
Osteoconductive grafts, 180
Osteogenic grafts, 180
Osteoinductive grafts, 180
Osteomyelitis, mandibular, 140f
Osteonecrosis
bisphosphonate-related osteonecrosis of the jaw, 90–91
neuropathic pain, 136–138, 137f
Oxymetazoline, 151

P
P value, 4, 4f
Pacemakers, 109
Pain
analgesics for, 85
anesthesia for control of, 155
atypical facial, 136–138, 137f
bitem, 111
cardiac, 138
cervicogenic, 138
defeathering, 137
heterotopic, 138
hydrodynamic theory of, 33
myofascial, 134
neuropathic, 135–136, 136f
neurovascular, 138
nonodontogenic, 327
odontogenic, 86, 90, 107
persistent, 327–328, 328f
phantom tooth, 137
postoperative, 86, 155, 158, 163
in pregnancy, 95
psychogenic, 138
referred, 133
selective anesthesia testing for, 112
sinus, 134
Painful post-traumatic trigeminal neuropathy, 136
Palatal anesthesia, 151
Palpation tenderness, 111
Panoramic radiographs, 113, 113f
Paraformaldehyde, 116
Paraformaldehyde-containing sealers, 318
Paresthesias, 323
Paroxysmal hemicrania, 135
Partial pulpotomy, 186, 299
Passive step-back technique, 159, 160f
Passive ultrasonic irrigation, 165, 168
Patency, 158–159, 159f
Patient record confidentiality, 200
PCO. See Pulp canal obliteration.
collagen composition of, 32
description of, 122
diagnoses associated with, 122, 122f
embryology of, 30
extracellular connective tissue of, 32, 32f
immunology of, 60–61
lymphatics of, 35
necrosis of. See Pulpal necrosis.
periodontal disease as, 56, 57f
restorative treatment as, 53–55
thermal insults as, 55
Pulpal necrosis
apical periodontitis and, 12f, 62f
cracked teeth affected by, 266
definition of, 122
herpes zoster and, 146
in horizontally fractured tooth, 263, 263f
intrusive luxation and, 240
medication-related osteonecrosis of the jaw as cause of, 91
microbial succession, 60
pulpal healing and, 16, 239
pulpal irritants as cause of, 58–59
after traumatic dental injuries, 249–250
Pulpal pathology
description of, 58–59
fractures as cause of, 53
histology of, 61
neurovascular responses to, 59
signs and symptoms, 61
Pulpectomy, 316f
Pulitis
hyperplastic, 125
irreversible, 58, 60, 79–80, 86, 92, 122, 155, 237, 266, 284f, 299
reversible, 60, 122, 132
Pulpotomy, 186–187, 187f, 299, 302
Pyrosequencing, 20–21

Q
QMix, 163
Quantitative light-induced fluorescence, 258
Quorum sensing, 15

R
Racellet pellets, 175
Radiation therapy, 92
Radicular dentin, 261, 300
Radiographic examination
bitewing radiographs, 113, 113f
cone beam computed tomography. See Cone beam computed tomography.
digital radiography, 114
panoramic radiographs, 113, 113f
periapical radiographs, 113, 113f, 116f, 118, 121f, 234
radiographic changes, 114
radiology principles, 112
systematic approach, 112, 112f
traumatic dental injuries, 233
two-dimensional dental radiography, 114–115, 115f
Radiology, 112
Randomized controlled trials, 2–3
RANK-L. See Receptor activator of nuclear factor kappa-B ligand.
Rapid antibiotic sensitivity test, 81
RAST. See Rapid antibiotic sensitivity test.
Ratner bone cavities, 137
Reactive dentin, 31
Receptor activator of nuclear factor kappa-B ligand, 64
Rectangular flap, 177
Referred pain, 133
Refrigerant spray, 107
Regenerative endodontics, 189–193, 190f, 192f–193f, 300f
Relative risk, 6–7
Renal compromise, 96
Renal failure, chronic, 96
Renal osteodystrophy, 96
Reparative dentin, 31, 54
Replacement resorption, 250–251, 252f, 282, 282f
Replantation of avulsed teeth, 245–246
intentional, 183–184, 280, 280f, 297–298
Research, 13
Resection, 177–178
Resilon, 169
Resin-modified glass ionomers, 54
Resorbable membranes, 180–181
Resorcilln, 172
Resorption
in apical periodontitis, 64
cytokine involvement in, 64
description of, 271
external apical root, 251
external cervical. See External cervical resorption.
external inflammatory root, 237, 252f, 281f
internal root, 250–251, 252f, 272–273, 273f
invasive cervical root, 273
invasive root, 250–251
malignancies as cause of, 144, 145f
orthodontic therapy and, 56
pathogenesis of, 271, 272f
pre-eruptive intracoronal, 284, 284f
Index

pressure, 282–283, 283f
replacement, 250–251, 252f, 282, 282f
surface, 281
after traumatic dental injuries, 250–251
types of, 125–126, 272f
Resource-intensive studies, 3
Restorative treatments
endodontic therapy after, 54, 55f
pulpal tissue affected by, 53–55
quality of, 291
temporary, 170–171, 195
Retrofilling, 178–179, 179t, 264, 296, 296f
Retropreparation, 177–178
Reversible pulpitis, 60, 122, 132
Rheumatoid arthritis, 92
Rickets, 142, 146
Risk, 6–7
Risk factors
disease and, relationship between, 6f
for external cervical resorption, 277f
for flare-ups, 324f
importance of establishing, 7f
for traumatic dental injuries, 227f
Root amputation, 297
Root apex, 40
Root canal(s)
accessory, 40–41
anatomy of, 37–43
configuration of, 37, 38t–39t
C-shaped, 41–43, 43f
maxillary, 38t
variants of, 41–43
Vertucci’s classification system for, 37, 37f
Root canal filling materials, 197
Root canal space, 41
Root canal therapy. See Nonsurgical root canal therapy; Surgical root canal therapy.
Root fractures
caracteristics of, 231f, 232
classification of, 260–261
cone beam computed tomography detection of, 119
healing after, 239, 239f
horizontal, 234f, 263f, 263–264
longitudinal, 123, 261, 263, 266
oblique, 263
radiographic findings of, 234f
treatment of, 236f, 238
types of: 259f, 259–260
vertical. See Vertical root fractures.
Root resorption. See Resorption.
Root ZX apex locator, 157
Root-end surgery, 319, 323
Rotary instruments, 160, 309
Rubber dams, 155, 294, 326
“Russian Red” removal, 172, 172f
Saccharolytic, 17
Scalloped submarginal incisions, 176
Scleroderma, 142
Sensitivity, 5, 5f
Sensory nerves
of pulp, 32–34, 33f
stimulation of, 34, 34f
Sensory neurons, 93
Separated instruments, 309f–311f, 309–311
Severe acute respiratory coronavirus 2, 92
Sialophosphoprotein, 30
Sinusitis, 96, 318
Sodium hypochlorite
accidents involving, 314–315, 315f
antimicrobial uses of, 190–191
chlorhexidine gluconate and, 164f
properties of, 162f, 162–163
Sodium perborate walking bleach technique, 194
Sodium perchlorite
accidents involving, 314–315, 315f
antimicrobial uses of, 190–191
chlorhexidine gluconate and, 164f
properties of, 162f, 162–163
Sodium perchlorite
accidents involving, 314–315, 315f
antimicrobial uses of, 190–191
chlorhexidine gluconate and, 164f
properties of, 162f, 162–163
Soft tissue healing, 182
SORT grading system. See Strength of recommendation taxonomy grading system.
SP. See Substance P.
Specificity, 5, 5f
Spirochetes, 18
Splinting, 235–236, 236f, 236t
Split roots, 263
Stafne bone cavities, 67
Stainless steel instruments, 309
State laws, 200
Statistics
measures of statistical significance, 3–4
measures of validity, 5f, 5–6
Stem cells, 191
Step-down technique, 159, 160f
Strength of recommendation taxonomy grading system, 2
Streptococci, 17
Streptococcus spp
S epidermidis, 21
S mitis, 17
S mutans, 21, 52
Stressed pulp syndrome, 53
Study design, 2–3
Supclavian vein, 44
Subjective examination, 106
Sublingual space, 22, 24
Subluxation, 232, 234f, 236t, 239
Submandibular space, 22, 24
Submarginal incisions, 176, 177f
Submental space, 22, 24
Subodontoblastic capillary plexus, 34
Substance P. 30, 34, 57, 59
Success rates
for endodontic surgery, 295–297
for endodontic treatment, 288
factors that affect, 288
for nonsurgical retreatment, 293–294, 294f
for nonsurgical root canal therapy, 289t, 289–293, 293f
for pulpotomy, 299
for surgical root canal therapy, 295
for vital pulp therapy, 298–299
Success versus survival, 8–9
Sulcular perforations, 314
Sulfur granules, 18
Super EBA, 178–179, 179f, 296
Superoxol, 194
Supplemental anesthesia, 154
Suppressor T cells, 62, 62f
Surface resorption, 281
Surgery
endodontic. See Endodontic surgery.
maxillofacial anatomy, 47
Surgical endodontics. See Endodontic surgery.
Surgical operating microscope, 156, 156f, 295, 311
Surgical root canal therapy. See also Endodontic surgery.
healing after, 297
nonsurgical retreatment versus, 297
outcomes of, 295, 296f
radiographic imaging of, 297f
success rates for, 295
techniques used in, 295
Surgical site exposure, 176–177
Surgicel, 175
Survival versus success, 8–9
Suturing, 180
Swelling, noninfectious, 141
Swept-source optical coherence tomography with cross-sectional imaging, 258
Symptomatic apical periodontitis, 123
Systematic reviews, 2
T
T cells, 62, 62f
TA. See Temporal arteritis.
Talon cusp, 42
Tannerella forsythia, 15, 20–21
Targeted endodontic microsurgery, 175
Teeth. See also Mandibular teeth;
Maxillary teeth; Primary dentition; specific teeth.
arrestal supply to, 43
avulsed. See Avulsions.
cracked. See Cracked tooth/teeth.
embryology of, 29–30, 30f
microcracks in, 228
neural pathways to, 45–46, 46f
thermal sensitivity of, 53
Telehealth, 93
Temporal arteritis, 138
Temporary restorations, 170–171, 195
TEMS. See Targeted endodontic microsurgery.
Tension-type headaches, 135
Tertiary dentin, 31, 31f
Test outcomes, 5t
Tetracalcium aluminoferrite, 179, 179f
Tetracycline, 81, 83f, 96
Tetrafluoroethane, 107
Thermal injuries, 318–319, 319f
Thermal insults, 55
Thermal sensitivity tests, 108
Thermography, 110
Third molar extractions, 155
Third order neurons, 46
Thoracic duct, 45
Tissue engineering, 190
TN. See Trigeminal neuralgia.
Tooth cracks. See Cracked tooth/teeth.
Tooth fractures. See Fracture(s).
Tooth preparation, 54
Tooth Slooth, 265
Tooth stiffness, 195
Trabeculae, 36, 182
Tramadol, 85
Transillumination, 112, 265
Trapezioidal flap, 177
Traumatic dental injuries
acute priority, 229, 229f
age of patient and, 227, 228f
avulsions
description of, 233
in immature teeth with closed apex, 245–247
in mature teeth with closed apex, 244–245
periodontal ligament maintenance in, 242
radiographic findings in, 235
replantation of, 241–242, 245–246
storage of tooth, 242, 242f, 244, 250
treatment of, 236t, 241–247, 243f
in children, 227
complications of, 249–251, 252f
delayed priority, 229, 229f
description of, 126
diagnosis of clinical examination, 230–231
clinical findings, 231f–232f, 231–233
data necessary for, 229
periradicular testing, 230
primary survey in, 228
secondary survey in, 228–229
systematic approach for, 229, 230f
endodontic therapy for, 237
epidemiology of, 227
evidence-based management of, 226
external inflammatory root resorption and, 281
falls as cause of, 227
fractures. See also Fracture(s).
classification of, 259f
horizontal root, 264
radiographic findings, 234f, 234–235
treatment of, 237–239
types of, 231–232, 259, 259f
guidelines for, 226, 260
incidence of, 227, 257
luxation-type injuries follow-up of, 241
radiographic findings in, 235
treatment of, 236t, 239–241
type of, 232–233
mouth guards for prevention of, 252
pathophysiology of, 228
postoperative instructions for, 247–248
prevalence of, 257
prevention of, 252
in primary dentition, 247–248
prioritization of, 229, 229f
prognosis for, 248, 249f
pulpal inflammation after, 228
pulpal necrosis after, 249–250
radiographic examination, 233
radiographic findings, 233–235, 234f
resorption after, 250–251
risk factors for, 227f
splinting of, 235–236, 236f, 236t
subacute priority, 229, 229f
treatment of, 235–248, 236t
Treponema spp, 18
Triangular flap, 177
Triazolam, 89
Tricalcium silicate, 179
Trichloroacetic acid, 278–280
Trigeminal autonomic cephalalgias, 135
Trigeminal ganglion, 46
Trigeminal nerve, 45
Trigeminal neuralgia, 135
Trigeminocladal tract, 46
Triptans, 134
True cysts, 66–67
Tumor necrosis factor-α, 60, 63
Two-dimensional dental radiography, 114–115, 115f
U
Ultrasonic instruments, 319
Ultrasonic retro-preparations, 178
Ultrasonic vibration, 171–172
Uncomplicated fractures, 231–232, 234f, 260
Unmyelinated C fibers, 32–33
V
Validity, 5f, 6–5
Varicella zoster virus, 19, 97, 276
Vasculature, pulpal, 34–36, 35f
Vazirani-Akinosi technique, 152
Venous drainage, 44
Venous-venous anastomoses, 35
Vertical condensation, 169
Vertical releasing incision, 177
Vertical root fractures
bacterial ingress via, into dental pulp, 258
bone loss areas associated with, 262
clinical presentation of, 261–262
cone beam computed tomography of, 235, 262, 262f
description of, 123, 124f
dentist injury resulting in, 262f
deficiency of, 258
endodontic therapy failure caused by, 326, 327f
factors associated with, 261
imaging of, 262, 262f
periodontal probing depths associated with, 261–262
prognosis for, 263
radiographic findings in, 261f, 262
Vertucci’s root canal classification system, 37, 37f
Vibrothermography, 258
Vicodin, 88t
Viruses, 19, 19f, 276
Vital pulp therapy
 pulp capping, 184–186, 185f, 298
 pulpotomy, 186–187, 187f, 299
 purpose of, 184
 success rates for, 298–299
Vitamin D–resistant rickets, 142, 146
VZV. See Varicella zoster virus.

W
Working lengths, 157f, 157–158

X
Xenografts, 180, 180f

Z
“Zones of Fish,” 12, 12f