ADVANCES IN RESTORATIVE DENTISTRY

Edited by
Adrian Lussi and Markus Schaffner

With contributions from:
Adrian Lussi, Brigitte Zimmerli, Klaus Neuhaus,
Matthias Strub, Stefan Hänni, Markus Schaffner, Svante Twetman,
Martina Eichenberger, Simon Flury, Philippe Perrin, Rainer Seemann,
Philip Ciucchi, Anne Grüninger, Daniel Jacky, Thomas Jaeggi,
Franziska Jeger, Karin Kislig, Domenico Di Rocco, Jonas Rodrigues,
Benjamin Schüz, and Beat Suter

QUINTESSENCE PUBLISHING
London, Berlin, Chicago, Tokyo, Barcelona, Beijing, Istanbul, Milan,
Moscow, New Delhi, Paris, Prague, São Paulo, Seoul, Singapore and Warsaw
Acknowledgements

Thanks go to Ueli Iff and Anne Seeger (Department of Multimedia and Computer Science, University of Bern) for the production of the graphical figures, as well as to Herrmann Stich (Department of Preventive, Restorative and Pediatric Dentistry, University of Bern) for the histology pictures.
Preface

Dentistry has undergone a major transformation over recent years and decades. New technologies have been developed and a better understanding of biological principles and processes has been gained. This book sheds light on these new aspects in preventive dentistry and restorative dentistry.

Advances in Restorative Dentistry gives an overview of current trends in this diverse and important specialist field for dental practitioners. The broad scope of restorative and preventive dentistry is examined in 25 chapters. The following subjects are discussed:

- Structure and pathology of the tooth
- Aspects of prevention
- Caries
- Magnification aids in restorative dentistry
- Damage to adjacent teeth and minimally invasive preparation
- Yesterday retention – today adhesion?
- Bleaching
- Dental erosion
- Endodontontology
- Halitosis

The wealth of illustrations and highlighted key sentences make it easy to incorporate current knowledge into daily practice as well as into teaching and study activities.

Adrian Lussi
Markus Schaffner
Authors and contributors

Prof. Dr. med. dent. Adrian Lussi
Executive Director and Head of Department
Department of Preventive, Restorative and Pediatric Dentistry
University of Bern
E-Mail: adrian.lussi@zmk.unibe.ch

Dr. med. dent. Markus Schaffner
Senior Lecturer
Department of Preventive, Restorative and Pediatric Dentistry
University of Bern
E-Mail: markussch@bluewin.ch

Dr. med. dent. Philip Ciucchi
Research Associate
Department of Preventive, Restorative and Pediatric Dentistry
University of Bern
E-Mail: Philip.ciuchhi@zmk.unibe.ch

Dr. med. dent. Martina Eichenberger
Lecturer
Department of Preventive, Restorative and Pediatric Dentistry
University of Bern
E-Mail: martina.eichenberger@zmk.unibe.ch

Dr. med. dent. Simon Flury
Research Associate
Department of Preventive, Restorative and Pediatric Dentistry
University of Bern
E-Mail: simon.flury@zmk.unibe.ch

Dr. med. dent. Anne Grüninger
Senior Lecturer
Department of Preventive, Restorative and Pediatric Dentistry
University of Bern
E-Mail: anne.grueninger@zmk.unibe.ch

Dr. med. dent. Stefan Hänni
Senior Lecturer
Department of Preventive, Restorative and Pediatric Dentistry
University of Bern
E-Mail: stefan.haenni@zmk.unibe.ch

Dr. med. dent. Daniel Jacky
Lecturer
Department of Preventive, Restorative and Pediatric Dentistry
University of Bern

Dr. med. dent. Thomas Jaeggi
Senior Lecturer
Department of Preventive, Restorative and Pediatric Dentistry
University of Bern
E-Mail: thomasjaeggi@bluewin.ch

Dr. med. dent. Franziska Jeger
Senior Lecturer
Department of Preventive, Restorative and Pediatric Dentistry
University of Bern
E-Mail: franziska.jeger@zmk.unibe.ch

Dr. med. dent. Karin Kislig
Senior Lecturer
Department of Preventive, Restorative and Pediatric Dentistry
University of Bern
E-Mail: karin.kislig@zmk.unibe.ch

Dr. med. dent. Klaus W. Neuhaus
Senior Lecturer
Department of Preventive, Restorative and Pediatric Dentistry
University of Bern
E-Mail: klaus.neuhaus@zmk.unibe.ch

Dr. med. dent. Philippe Perrin
Senior Lecturer
Department of Preventive, Restorative and Pediatric Dentistry
University of Bern
E-Mail: perrins@bluewin.ch

Dr. med. dent. Domenico Di Rocco
Senior Lecturer
Department of Preventive, Restorative and Pediatric Dentistry
University of Bern
E-Mail: domenico@dirocco.ch

Dr. med. dent. Jonas de Almeida Rodrigues
MSc, PhD
Research Associate
Department of Preventive, Restorative and Pediatric Dentistry
University of Bern
E-Mail: jorodrigues@hotmail.com

PD. Dr. med. dent. Rainer Seemann
Senior Lecturer
Department of Preventive, Restorative and Pediatric Dentistry
University of Bern
E-Mail: rainer.seemann@zmk.unibe.ch

Benjamin Schüz, Dipl.-Psych.
Lecturer
School of Psychiatry
University of Tasmania
E-Mail: Benjamin.Schuez@utas.edu.au

Dr. med. dent. Matthias Strub
Senior Lecturer
Department of Preventive, Restorative and Pediatric Dentistry
University of Bern
E-Mail: mathias.strub@zmk.unibe.ch

Dr. med. dent. Beat Suter
Senior Lecturer
Department of Preventive, Restorative and Pediatric Dentistry
University of Bern
E-Mail: bs@endodontic-bern.ch

Prof. Svante Twetman
Head of Department
Department of Cariology and Endodontics
Faculty of Health Sciences
University of Copenhagen
E-Mail: stw@odont.ku.dk

Dr. med. dent. Brigitte Zimmerli
Senior Lecturer
Department of Preventive, Restorative and Pediatric Dentistry
University of Bern
E-Mail: brigitte.zimmerli@zmk.unibe.ch
Contents

I Structure and pathology of the tooth
1 Structure and pathology of the tooth
Markus Schaffner and Adrian Lussi

II Aspects of prevention
2 Motivation and action – two aspects of oral hygiene at home
Benjamin Schüz and Rainer Seemann
3 Cariostatic mechanisms of action of fluorides
Adrian Lussi
4 The role of xylitol in caries prevention
Svante Twetman
5 Probiotics – a new approach in caries prevention?
Svante Twetman
6 Novel methods of promoting remineralization
Klaus Neuhaus and Adrian Lussi
7 Antibacterial agents for the prevention of caries
Svante Twetman and Klaus Neuhaus

III Caries
8 Diagnosing caries and caries activity
Adrian Lussi, Markus Schaffner, Jonas Rodrigues, and Klaus Neuhaus
9 Sealing and infiltration of caries – is this the future?
Brigitte Zimmerli and Simon Flury

IV Magnification aids in restorative dentistry
10 Utility and futility of magnification aids in restorative dentistry
Martina Eichenberger, Philippe Perrin, Daniel Jacky, and Adrian Lussi

V Damage to adjacent teeth and minimally invasive preparation
11 Damage to adjacent teeth and minimally invasive preparation
Martina Eichenberger, Philippe Perrin, and Adrian Lussi
12 Novel preparation and excavation methods
Klaus Neuhaus, Franziska Jeger, Philip Ciucchi, and Adrian Lussi
VI Yesterday retention – today adhesion?

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Adhesive techniques for dental restorations</td>
<td>115</td>
</tr>
<tr>
<td>14</td>
<td>Direct restorative technology</td>
<td>123</td>
</tr>
<tr>
<td>15</td>
<td>Restoration repairs</td>
<td>137</td>
</tr>
<tr>
<td>16</td>
<td>Post systems</td>
<td>143</td>
</tr>
<tr>
<td>17</td>
<td>The CEREC system</td>
<td>151</td>
</tr>
</tbody>
</table>

Authors:
- Brigitte Zimmerli and Matthias Strub
- Brigitte Zimmerli, Matthias Strub, and Simon Flury
- Brigitte Zimmerli and Matthias Strub
- Domenico Di Rocco and Adrian Lussi

VII Bleaching

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Bleaching</td>
<td>163</td>
</tr>
</tbody>
</table>

Authors:
- Brigitte Zimmerli and Anne Grüninger

VIII Dental erosion

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>Dental erosion</td>
<td>175</td>
</tr>
</tbody>
</table>

Authors:
- Adrian Lussi and Thomas Jaeggi

IX Endodontology

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Root canal preparation</td>
<td>193</td>
</tr>
<tr>
<td></td>
<td>Beat Suter</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Root canal irrigation</td>
<td>207</td>
</tr>
<tr>
<td></td>
<td>Stefan Hänni</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Root canal filling</td>
<td>215</td>
</tr>
<tr>
<td></td>
<td>Stefan Hänni</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Cracked tooth syndrome</td>
<td>223</td>
</tr>
<tr>
<td></td>
<td>Stefan Hänni and Adrian Lussi</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Endodontology in the primary dentition</td>
<td>233</td>
</tr>
<tr>
<td></td>
<td>Markus Schaffner, Klaus Neuhaus, and Adrian Lussi</td>
<td></td>
</tr>
</tbody>
</table>

X Halitosis

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>Halitosis</td>
<td>245</td>
</tr>
</tbody>
</table>

Authors:
- Rainer Seemann and Karin Kislig

Index

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Index</td>
<td>261</td>
</tr>
</tbody>
</table>
Fig 1-7 Structural characteristics – enamel
The periodic laying down of enamel is expressed in the lines of Retzius. Where these lines reach the surface, the perikymata are visible. Viewing the longitudinal and transverse sections of enamel by light microscopy reveals light and dark striae in the inner two-thirds. These Hunter-Schreger bands are caused by the wavelike path of the enamel prisms.

Fig 1-8 Perikymata under scanning electron microscope (SEM)
The magnification clearly shows not only the perikymata but also the lines of imbrication running between them.

Fig 1-9 Enamel tuft
Enamel tufts are hypomineralized areas of enamel which look like tufts of grass under light microscopy. Enamel tufts can provide a location favourable to bacteria in the event of carious attack. Caries is clearly visible in the histologic image.

Fig 1-10 Enamel pearl
Left: radiograph of an enamel pearl in the interproximal area of a maxillary molar. Right: enamel pearl in the bifurcation of a molar.
Structural defects and paraplasias of the enamel

In most teeth, enamel structural defects can be identified by light microscopy. A large proportion of these defects arise during amelogenesis. These include enamel tufts (Fig 1-9) and enamel lamellae. Enamel tufts and lamellae can prove to be the line of least resistance in respect of the spread of caries.

The enamel pearl is a paraplasia of the enamel. This means the formation of enamel in an atypical localization. Enamel pearls can cause isolated periodontitis in the area of the furcation (Fig 1-10).

Dysplasias of the enamel (and dentin)

Dysplasia of enamel and/or dentin can be caused by defects of genes that are responsible for odontogenesis. However, traumatic, inflammatory, and chemical processes as well as metabolic disorders and systemic diseases can also cause malformations of the enamel and/or dentin.

In enamel and/or dentin dysplasias of genetic origin, all the teeth of one or both dentitions are usually affected to a varying degree. They can be inherited from generation to generation, so that similar disorders of odontogenesis can be found in siblings, parents, and grandparents (Figs 1-11 to 1-13, see also Fig 1-19).
Studies have shown that the occlusal surfaces of the permanent molars in children and adolescents are most commonly affected by caries. The proportion of pit and fissure caries in children with minimal caries is between 75% and 92% depending on age. Thus pit and fissure caries is bound to be a common diagnosis. There are various possible reasons for the high caries prevalence in fissures:

- Until final occlusion-finding, an increased accumulation of plaque can be seen in the fissures.
- The enamel is prone to caries in the first few years following eruption. Maturation of enamel involves remineralization and demineralization cycles. The reduced susceptibility of mature enamel to caries is not fissure-specific, but makes a greater impact there.
- The unfavorable fissure morphology prevents adequate cleaning of the fissure base and impedes saliva access (Figs 8-4 to 8-7).

Pit and fissure caries

- Fig 8-1 Smooth surface caries with intact surface.
- Fig 8-2 Smooth surface caries with local surface breakdown. Left: initial finding. Centre: after 10 years. Right: after 20 years.
- Fig 8-3 Smooth surface caries with pronounced breakdown of surfaces.
Diagnosing caries and caries activity

It is important for the teeth to be cleaned before diagnosis so that white spots at the fissure entrance can be identified (Fig 8-8). If a white spot is already visible before drying, it is reasonable to assume that the caries is more advanced than in a white spot which needs to be dried before it can be detected. This long-known fact was recently systematized with the ICDAS system, one of the aims being to publicize comparable diagnostic criteria in all countries.5

Diagnosis is difficult because dentin caries can exist underneath an apparently intact surface. In most cases, however, drying and close inspection will reveal an area of decalcification at the fissure entrance. The frequency of the so called “hidden caries” in molars varies between 10% and 50%. It appears to be a direct consequence of suboptimal technique in clinical diagnostics.
The use of a probe does not improve the diagnostic investigation of pit and fissure caries. Furthermore, a disadvantage of probing with pressure is that enamel areas decalcified at the surface are destroyed and this can accelerate the progression of caries. Drying the surface will reveal an area of decalcification that is a definite sign of caries.

Occlusal caries that has penetrated into the dentin can be diagnosed by bitewing radiographs. Dentin caries that is visible on a radiograph but which has an intact surface is generally treated by minimally invasive treatment and restoration (Figs 8-9 and 8-10).

Fluorescence measurement

Tools enabling caries to be detected early, even when the surface is apparently intact, have been sought for a number of years. The systems now available on the market and suitable for daily use take advantage of the fluorescence of dental hard substance that has been altered by caries.
When radiant energy is applied to a tooth it causes a temporary transition of certain molecules into an excited state. That energy is then released as the molecules return to their initial state; part of the energy is released into the surrounding tissue as heat, while another part is lost as an emission of light, namely fluorescent radiation. The fluorescent light emitted has a longer wavelength (> 680 nm) than the light causing the excitation (655 nm).

This principle was developed into a practical device for caries detection in the form of the DIAGNodent® (DD) and DIAGNodent® pen (DD pen) (KaVo, Biberach) (Fig 8-11). Unwanted light is retained by a filter system. An acoustic signal that changes in pitch as the tip of the device is rotated enables the operator to locate the point of highest fluorescence at a specific site without having to look at the display on the device (Fig 8-12). The maximum value is read off after the measuring process. Existing studies prove that the DIAGNodent based on laser fluorescence has good sensitivity for detecting dentin caries. As previously mentioned, clinical inspection achieves good specificity levels. Therefore, the advantages of the higher specificity and speed of clinical diagnostic examination can usefully be combined with the advantages of this device.
Reversible and irreversible pulpitis due to caries

Owing to the large pulp cavity and the minimal thickness of enamel and dentin, caries reaches the dentin close to the pulp after only a short time. Initial signs of inflammation in primary tooth pulp can be observed histologically soon after first contact of caries with dentin. At the beginning, this process is still reversible (reversible pulpitis). However, if the caries advances further, it will result in irreversible spread of the inflammation (irreversible pulpitis). These changes do not always involve severe pain. However, if a primary tooth causes persistent pain and/or pain in response to heat, this means the inflammation has spread to the entire pulp of the primary tooth. Sensitivity to percussion means the inflammation has reached the apical or interradicular periodontium. Clinically, it is often very difficult to distinguish between reversible and irreversible pulpitis, especially because the sensitivity test with cold is not very informative in children. In the same primary tooth, healthy, vital areas of pulp can be observed alongside severely inflamed to necrotic pulp segments (Fig 24-1).

Treatments for reversible pulpitis

Incomplete (stepwise) caries excavation

In the case of a vital, symptom-free primary tooth with profound caries, pulp opening can be prevented by incomplete caries excavation. Preparation and thorough excavation of caries close to the pulp are first performed. The carious residual dentin close to the pulp is left in place. The dentin wound is then cleaned and disinfected (eg, with Tubulicid or chlorhexidine). If disinfecting the cavity with hydrogen peroxide, it is important to make sure that polymerization of acrylic resin can be inhibited. After the carious residual dentin has been
Endodontology in the primary dentition

Covered with a glass ionomer cement cavity liner (e.g., Vitrebond™), a tight seal is created using an adhesive system and composite resin. Various studies have shown that complete removal of caries is not necessary in deep carious lesions in order to prevent progression of the caries. However, a tight restoration that isolates any bacteria remaining in the cavity is a prerequisite. Individual authors dispense with coverage of the carious residual dentin with a cavity liner. Reopening of the cavity, as has been propounded for stepwise caries excavation, is therefore unnecessary for a symptom-free primary tooth where the restoration is intact.

Direct pulp capping

If the pulp is opened at points during caries removal from a symptom-free, vital primary tooth, direct pulp capping can be carried out. The opened pulp is covered with a calcium hydroxide material. This is followed by the application of a liner, then tight closure with a composite resin restoration. The use of mineral trioxide aggregate (MTA) is another option (though not very economical).

![Fig 24-1 Reversible versus irreversible pulpitis](image)
A
abrasion 176, 185
accessory canals 12–13
acellular afibrillar cementum (AAC) 11
acellular extrinsic fiber cementum (AEFC) 11
acid attack 26–27
acidic drinks 185, 186
adhesive luting agents, classification 120–121
adhesive systems 115–121
adjacent tooth damage 97–103
airs abrasion 105–107
air-polishing technique 106
aluminum oxide 105–107, 130
amelogenesis 5
anorexia nervosa 183, 184
antibacterial agents, topical application 53–57
antibacterial approaches 53
limitations 59
apical periodontitis, etiology 207
aesthetic treatment approach 208
attrition 176, 185
in-office 169
mechanism 164–165
over-the-counter products 170
procedure 165
walking bleach technique 133, 167–168, 170
bulimia nervosa 183, 184
C
C-factor 127
calcium content, of drink or food 185
calcium fluoride (CaF2) 30–31
calcium hydroxide 79, 235–240
canal inlay 155, 156
carbon posts 144
caries 14–15, 65–83
activity 76–77
antibacterial agents for prevention 53–60
approximal 71–74
CPP-ACP use in prevention 47
diagnosis 65–78
fluorescence measurement 68–70
incomplete (stepwise) excavation 234–235
measures to combat vertical transmission 57–58
minimally invasive treatment 90–92
noninvasive treatment techniques for initial lesions 80–83
pit and fissure 66–68, 70–71, 79
prevention of progression 79–83
in primary dentition 233–240
probiotics and 42–43
protective and promoting factors 25
risk assessment (CRA) 76–78
root 74–76
selective removal of dentin 109–110
smooth surface 65–66
understanding 20
Carisolv 109–110
carrier-based filling systems 220, 221
caseins 45–46
see also CPP-ACP
Cavishape file 100
cellular intrinsic fiber cementum (CIFC) 11
cellular mixed stratified cementum (CMSMC) 11
cementum 11
types 11
ceramic restoration repairs 138
CEREC system 151–159
case studies 153–159
aftercare 159
amalgam replacement 153–155
anterior rehabilitation with veneers 157–158
endo-crown 155–157
preparation guidelines for ceramic restoration fabrication 152–153
cheek retractors 125
chemochemical excavation 109–110
chlorhexidine (CHX) in caries prevention 54–55, 57–58
in root canal irrigation 210
in tongue cleaning 255
Clearfil SE Bond 117
CO2 laser 107, 108
CoJet system 137, 138, 139
compomers 124
composite resin materials 123–124
see also direct restorative technology

B
bacteria
metabolism 15, 33, 59, 246
where found 207–208
balanced force technique 201
Basic Erosive Wear Examination (BEWE) 177–178
Bevelshape file 100–101
bifidobacteria 48, 41
bioactive glass 50, 106
bleaching 163–171
home 165–167, 170–171
household products 170

Alle Rechte vorbehalten
composite resin restoration repairs 137–138
condenser-based technique 220, 221
continuous-wave technique 219
core materials 217
coronal reconstruction, importance 215–216
correlation method 158
CPP-ACP 46–49, 185
cracked tooth syndrome 223–230
clinical examination 228–229
clinical picture 227
definition 224
diagnosis 227–229
distribution 225
etiology 224
radiologic examination 229
restoration and 226, 229
symptoms 226–227
tooth type 225–226
treatment 229–230
trial cavity 229

denticles 12–13
dentin 8–11
chemical properties 26
dysplasias 7–8
selective removal 109–110
dentin hypersensitivity 223
development of teeth 3–5
DIAGNOdent pen (DD pen) 69–70, 71, 73, 74
diet, and halitosis 250
diode laser 107, 108
direct pulp capping 235–236
direct restorative technology 123–135
clinical application 125–131
auxiliary instruments 126–127
final finishing and polishing 130–131, 134–135
layering techniques 127–129
light polymerization 129–130
optimal operating field creation 125–126
composite resin materials 123–124
composite resin restoration fabrication procedure 132–135
discoloration, etiology 164
disinfection
alternative approaches 212
see also root canal irrigation
Duraphat 29, 31, 238

etching, enamel 117
ethylene diamine tetra-acetic acid (EDTA) 210
extension for prevention principle 97

F
fetor ex ore 245
fiber-optic transillumination (FOTI) 71, 73
fiber posts 143, 144, 145, 146
Filtek Silorane 124
finishing 130–131, 134–135
fluorapatite (FAP) 25, 26, 29
fluorescence measurement 68–70
fluoridated hydroxyapatite (FHAP) 26, 27–28, 29
fluorides 25–31
adsorbed 30
demineralization inhibition by 29
and dental erosion 187
incorporated 30
remineralization promotion by 27–28
usage recommendations 31
see also calcium fluoride
formaldehyde 240
formocresol 240
four-step adhesive systems 116

galilean loupes 88
gastroesophageal reflux 181, 183–184, 187
glide path 200
gold-cast cores 143, 144, 145
GT hand files 205
GTX system 205–206
gutta-percha 217

H
Halimeter 252–253
halitophobia 259
halitosis 245–259
causes of odor 246–248
cofactors 250
diagnostic procedure 248–254
forms 245–246
informing patient 259
patient history 249
prevalence 245
pseudohalitosis 245, 248, 249, 258–259
sources of odor 246–248, 252
treatment in dental practice 254–258
hand instruments 102
HEMA 119, 128
Hertwig's epithelial root sheath 3–5
hybrid layer 118, 119
hydrofluoric acid 138, 157, 158
hydroxyapatite (HAP) 26, 27
hypersalivation 184
hyposalivation 188

I
iatrogenic damage 97–98
ICDAS system 67
incomplete caries excavation 234–235
infiltration technique 80–81, 83
Intensiv Margin Shaper 100–101
iodoform paste 239, 236
IPS e.max CAD ceramic 155, 156, 158
irreversible pulpitis 234, 235
minimally invasive preparation 97
minimally invasive restorations 90–92
oral hygiene action 21–22
and halitosis 248, 249, 255–256
motivation 19–21
overcoming implementation deficits 22–24
practical implications for dental team 24
oral infections 39
organoleptic examination 251–252
ormocers 124
oscillating instruments 99–102
Oswald maturation 156
Owen, lines of 8

P
passive ultrasonic irrigation (PUI) 212
paste fillings 218, 221
patency file 200, 211
PathFiles 200
pellicles 185
periodontitis etiology 207
probiotics and 42–43
understanding 20
phosphate content, of drink or food 185
photodynamic therapy (PDT) 212
planning, oral hygiene 22–23
polishing 130–131, 134–135
post-and-core restoration 143, 148
post systems 143–149
povidone iodine (PI), in caries prevention 55–56, 57–58
PrepControl system 100–101
primary prevention approach 97
primary dentition, endodontology in 233–240
clinical examination 234
history taking 233
materials for endodontic measures 240
see also irreversible pulpitis; pulp necrosis; reversible pulpitis
primary-primary prevention 57–58
prismatic loupes 88
probiotics 39–43
ProTaper instruments 201
proton pump inhibitors 187
Proxoshape file 100
pseudohalitosis 245, 248, 249, 258–259
pulp 12–13
devitalized, with periapical radiolucency 207
vital 207
zones 12
pulp necrosis, treatment 238–239
pulpectomy 236–237
pulpitis 15–16
pulpotomy 236
quantitative laser fluorescence (QLF) 70

M
M wire 205
magnification aids 87–92, 102
R
radiography, in caries diagnosis 71–73, 75
Raschkow, nerve plexus of 12
remineralization 45
promotion
by bioactive glass 50
by CPP-ACP 46–48
by fluoride 27–28
by milk proteins 45
replacement therapy 41
Resilon 217
resin patch 82, 83
restoration repairs 137–140
Retzius, lines of 5
reversible pulpitis 234, 235
treatments 234–236
rinsing 31
root canal filling 215–221
importance 215
materials 216–217
quality 215
rating of methods 221
requirements 216
techniques 218–220
root canal irrigation 207–213
alternate rinsing 210, 211
choice of irrigant 209–210
disinfection strategies 208–209
efficacy 210
heating of irrigant 212
importance 207
manual 211–212
protocol 213
requirements for irrigants 209
root canal preparation 193–206
anatomy of root canals 196–197
chemomechanical 208
modern principles 198–203
apical gauging 202
apical patency 200
apical resistance form 202, 218
crown down preparation 199
deep shape 203
delayed length measurement 200
glide path 200
inlay-shaped access cavity 198
instrumentation 201
straight line access 198–199
Ni-Ti instrument properties 203–204
for post placement 145–147
risk analysis 193–195
techniques 205–206
root filling cements 217
root filling materials 216
rotary Ni-Ti instruments 199,
200, 201, 202–203
fractures 204
material properties 203–204
rubber dams 125–126
see also oral hygiene
tetracycline 9, 11
Therafil 220, 221
thermoplastic filling methods 219
Thomas spanner key 201
Tif4 187
tongue
assessment 254
cleaning 255–258
morphology 246
triclosan, in caries prevention 56
two-step adhesive systems 119
S
saliva, protective actions 185
sealants 217
sealing 79–83
conventional 80, 83
self-adhesive luting agents 120–121, 147
self-etch luting agents 120, 147
self-etch systems 116, 117, 118–119, 147–148
self-observation 23
separating rings 126–127, 133
silanization 108, 138, 139, 146, 147
silicatization 147
siloranes 124
silver diamine fluoride (SDF) 53, 57, 61, 238
single-cone technique 218, 221
sodium hexametaphosphate 49
sodium hypochlorite (NaOCl) 146, 209, 212–213
SONICflex airscaler 101–102
walking bleach technique 133, 167–168, 170
warm vertical condensation technique 219–220, 221
wedges 88, 89, 126, 132
Weil, zone of 12
white spot lesions, CPP-ACP in treatment 47–48
white teeth 163
Winkel tongue coating index 254
X
xerostomia 188
xylitol, role in caries prevention 33–37, 57–58
clinical evidence 34
clinical guidelines 37
cost-benefit perspective 35–36
doses 34, 35
patients benefiting 36
products 36–37
side effects 34
Z
zirconium posts 143, 144–145