1 Diagnosis 1
 Edgar Schäfer

2 Problems in preserving pulp vitality 33
 Edgar Schäfer and Claudia Barthel

3 Problems in treatment planning 45
 Michael Hülsmann, Edgar Schäfer and Clemens Bargholz

4 Health-related problems 65
 Edgar Schäfer

5 Preoperative restoration and placement of rubber dam 97
 Clemens Bargholz

6 Problems in dental anesthesia 115
 Claudia Barthel, Michael Hülsmann and Edgar Schäfer

7 Problems in the treatment of endodontic emergencies 127
 Michael Hülsmann and Edgar Schäfer

8 Problems in gaining access to the root canal system 145
 Michael Hülsmann and Claudia Barthel

9 Visualization 173
 Michael Arnold

10 Problems in determining endodontic working length 191
 Dirk Hör, Tina Rödig and Michael Hülsmann
11 Problems in root canal preparation 209
 Michael Hülsmann and Edgar Schäfer

12 Problems in disinfection of the root canal system 253
 Michael Hülsmann and Tina Rödig

13 Problems of root canal obturation 293
 Hans-Willi Herrmann and Michael Hülsmann

14 Problems in the assessment of healing, success and failure 335
 Michael Hülsmann, Edgar Schäfer and Claudia Barthel

15 Vertical tooth and root fractures 353
 Clemens Bargholz

16 Periodontal–endodontal lesions 371
 Michael Hülsmann and Edgar Schäfer

17 Perforations 385
 Clemens Bargholz

18 Instrument fractures 401
 Michael Hülsmann

19 Resorption 421
 Michael Hülsmann and Edgar Schäfer

20 Retreatment 435
 Clemens Bargholz, Michael Hülsmann and Edgar Schäfer

21 Incomplete root formation 463
 Edgar Schäfer

22 Aspiration and swallowing accidents 479
 Edgar Schäfer

23 Endodontic treatment of teeth with anatomical malformations 485
 Michael Hülsmann and Edgar Schäfer
24 Problems in bleaching of endodontically treated teeth 515
Thomas Attin

Index 531
Contributors

Michael Arnold, BDS (Stomatology)
Königstrasse 9
D-01097 Dresden
Germany

Prof. Thomas Attin
Department of Preventive Dentistry, Periodontology and Cariology
Zurich University
Plattenstrasse 11
CH-8028 Zurich
Switzerland

Dr. Clemens Bargholz
Mittelweg 141
D-20148 Hamburg
Germany

Prof. Claudia Barthel
Department of Operative Dentistry
Heinrich-Heine-Universität Düsseldorf
Moorenstrasse 5
D-40225 Düsseldorf
Germany

Dr. Hans-Willi Herrmann
Zahnarztpraxis Im Dienheimer Hof
Mannheimer Strasse 6
D-55545 Bad Kreuznach,
Germany

Dr. Dirk Hör
Oberlinxweillerstrasse 19
D-66606 Niederlinxweiler
Germany

Prof. Michael Hülsmann
Department of Operative Dentistry, Preventive Dentistry and Periodontology
Georg-August-Universität Göttingen
Robert-Koch-Strasse 40
D-37075 Göttingen
Germany

Dr. Tina Rödig
Department of Operative Dentistry, Preventive Dentistry and Periodontology
Georg-August-Universität Göttingen
Robert-Koch-Strasse 40
D-37075 Göttingen
Germany

Prof. Edgar Schäfer
Department of Operative Dentistry
University of Münster
Waldeyerstrasse 30
D-48149 Münster
Germany
Preface

Endodontics is enjoyable!
It seems that this view is shared by many of our colleagues – despite the difficult conditions that sometimes prevail in everyday practice – leading to a sort of “endodontics euphoria” over the past few years. As ever, when procedures are not only fascinating and absorbing, but also have good prognoses, even under ordinary practice conditions (provided that basic treatment principles are upheld), there is a tendency to go deeper and deeper into the subject and risk treating increasingly more complex and difficult cases. We often see a quick extraction being replaced by an attempt to preserve even severely compromised teeth with endodontic or surgical endodontic procedures. Retreatments now make up the majority of procedures carried out by endodontic specialists, whereas perforation repair and the removal of fractured instruments have become part of everyday practice routine for many dentists. Our aim in this book is to offer support in overcoming problems, to ensure that the enjoyment and fascination of endodontics are not lost, even in cases that cannot be described as routine.

We contribute clinically relevant information to a few of the key problem areas in endodontics, starting with the often neglected subjects such as diagnosis, preservation of tooth vitality and the treatment of pain, and also including preventive aspects and practical problem-solving tips. We felt that a “root canal cookbook” or an endodontic “DIY manual” would not be helpful, so we have made an effort to include key findings and data from the scientific literature. Of course, the reader must be aware that these are subject to constant change, and that some of the older information will need to be interpreted with some caution. However, “old” is not necessarily “bad” (and vice versa).

Of course, this book has a worthy model in Problem Solving in Endodontics (Gutmann, Dumsha and Lovdahl, Mosby, 2005), now in its fourth edition, which, in many ways, reflects the American treatment philosophy. Nevertheless, this compendium still offers a huge variety of material, knowledge, advice and food for thought, as well as many practical tips and tricks. Our book, in its original language, represented an effort to create a similar work for German speakers, to be regularly updated, constantly improved and enriched by future advice and by case reports from everyday dental practice.

At this point, therefore, we would like to thank not only all our many co-authors but also, in particular, all our colleagues, whether based at practices or universities, for their informative case histories.

Of course this book will not encompass every situation. So many of the clinical findings and problems have such a variety of different solutions that they cannot all be collected into one book. In addition, unfortunately, many practical procedures are difficult to describe on the page; sitting in on clinical demonstrations, attending practical courses and taking part in classic training and continuing professional
development still remain essential and irreplaceable learning media for such situations. We would therefore be very pleased to hear from interested colleagues and to receive as much as possible in the way of advice, clinical tips and even additional case reports for the next edition, which we hope to produce in due course.

This book is merely a gateway into this subject and is far from complete. Important omissions are dental traumatology, the endodontic treatment of primary teeth and (micro)surgical endodontics. We hope these will find a place in future editions.

Prof. Dr. Michael Hülsmann, Göttingen, Germany
Prof. Dr. Edgar Schäfer, Münster, Germany
8 Problems in gaining access to the root canal system

Nature of the problem

Calcifications completely or partially block and obscure the access into the root canal systems and can hamper preparation, disinfection and obturation. Searching for calcified root canal systems carries an increased risk of perforation.

Radiographs alone can never be used as a basis for determining whether complete calcification has taken place; these teeth always require clinical verification (Figs 8-11 to 8-13). Pulp testing ceases to have any diagnostic value once the calcification has reached an advanced stage.

Indications for endodontic treatment of teeth with actual or suspected calcification

Periapical lesions of endodontic origin are always manifestations of a disease that develops from the presence of microorganisms in the root canal system (or, in rare cases, in the periapical region). Healing can take place only if these bacteria are removed as completely as possible. Therefore, root canal treatment is strongly indicated in a tooth with a partially (or apparently) calcified root canal system and apical periodontitis. However, if all attempts still fail to result in complete exposure and instrumentation of the root canal system, the clinician should consider root resection, hemisection or extraction.
8 Problems in gaining access to the root canal system

Calcification

Definition

Initially, calcification is a process involving the reduction in size of the intradental cavities as a result of hard-tissue formation by the cells of the vital pulp; it ends in complete calcification as a result of dentin deposition inside the tooth.

Background

Hard-structure depositions of a physiological nature (secondary dentin formation) lead to slow and uniform constriction and narrowing of the pulp chamber. This process accelerates if the odontoblasts are stimulated by progressive caries. The pulp tissue reacts to this stimulus by the precipitate deposition of irregular tertiary dentin, with the aim of forming a barrier against the advancing caries. Chronic irritation caused by exposed dentin also leads to the formation of tertiary dentin, which results in a constriction in the cervical region of the tooth in many cases. Moreover, calcifications are a common consequence of dental and occlusal trauma, certain types of maxillary surgery (e.g. Le Fort I osteotomy) and also certain kinds of orthodontic treatment.

Calcifications of varying extent develop in teeth that have been subjected to luxation trauma. Pulpal necrosis occurs with some major delay in 20% of teeth with radiologically detectable calcifications. Calcifications have been observed in 2.3% of patients following Le Fort I operations; according to other studies, the incidence may be as high as 30%. Further causes that have been described include surgery-related changes in perfusion and in combined surgical and orthodontic treatment. Calcifications in the pulp chamber have also been observed following orthodontic treatment.
Fig. 15-25 A fine fracture line (arrow) is revealed when the marginal gingiva is retracted.

Fig. 15-26 Corresponding radiograph.

Fig. 15-27 View of the cavity after obturation of the distal root canal.

Fig. 15-28 Course of the fracture lines (mesial section).

Fig. 15-29 Course of the fracture lines (lingual view).

Fig. 15-30 Situation following hemisection and removal of the mesial root.

Fig. 15-31 Corresponding radiograph.
A 59-year-old woman presented with symptoms in tooth 38, which had been restored with a gold inlay with reasonable margins. The tooth reacted negatively to the cold test and a radiograph showed apical periodontitis. Removal of the inlay revealed an incomplete transverse fracture (infraction) of the tooth running through the roof of the pulp chamber (Fig. 15-34). The crown of the tooth was stabilized with an adhesive restoration, which bonded the fragments together (Fig. 15-35), followed by root canal treatment (Fig. 15-36). Six months later, the tooth was restored with a partial porcelain crown bonded with adhesive (Fig. 15-37). The patient presented again with symptoms 2 years later. The clinical examination and a radiograph showed that the fracture had extended into the root, making extraction unavoidable (Figs 15-38 and 15-39).