Cone-beam Volumetric Imaging in Dental, Oral and Maxillofacial Medicine
Fundamentals, Diagnostics and Treatment Planning

With contributions by:
Bert Braumann, Timo Dreiseidler, Rainer Haak, Joachim Hey, Erwin Keeve, Jochen Kusch, Esther Lowden, Robert A. Mischkowski, Jörg Neugebauer, Lutz Ritter, Mitra Saffar, Martin Scheer, Philipp Scherer, Rusbeh Shirani, Max Zinser and Joachim E. Zöller
The diagnostic requirements in dental medicine are determined not only by oro-maxillofacial surgical therapeutic concepts but also by the increasing esthetic expectations of the patient. The trend to performing even extensive dental surgical procedures on an outpatient basis requires minimally invasive surgical techniques so that any necessity for postoperative inpatient treatment is largely avoided. Successfully performing minimally invasive surgical techniques requires a comprehensive three-dimensional diagnostic system, which also reduces the risk of complications. Therefore, we at the University of Cologne quickly initiated the use of three-dimensional imaging for computer-assisted surgery.

However, three-dimensional radiological imaging has not yet been routinely established in dental medicine and generally dentists have used the orthopantograph for diagnostic purposes. The development of cone-beam volumetric imaging was intended to allow the use of legally permitted levels of dental radiation for a wider range of applications. Using this technique a computed tomographic scan of the cranium is an acceptable item for billing under medical fees schedules in Germany. In addition to the use of the technique for clear dental indications, it was also important to assess how good it would be in detecting asymptomatic conditions. In the initial trial phase, we were surprised by the frequency of discovery of asymptomatic pathological entities by chance. This led to the idea of illustrating the various, sometimes rare, findings in an atlas to provide the user of cone-beam volumetric imaging with a reference for use in day-to-day assessments.

The GALILEOS software primarily used in this atlas is unique because it produces a three-dimensional orthopantograph that can be studied three-dimensionally using the assessment window. Naturally, this dynamic assessment cannot be illustrated in a book. Therefore, we have compiled a DVD with an original data set and numerous on-screen videos of assessments in different dental disciplines in order to demonstrate the identification of anatomical and pathological structures.

We hope that the first-time reader will find much enjoyment in this introduction and we hope to provide the experienced reader with a reference work for the various findings.

Prof. Dr. Dr. J. E. Zöller
Dr. J. Neugebauer
and co-authors
The dentist’s working volume is hardly more than one liter, but this human body part contains within a very confined space a multitude of bones, vessels, nerves and anatomical structures of singular importance to the patient’s quality of life and communication options.

Therefore, radiological diagnostics has represented an essential source of information for the dentist’s spatial orientation since the beginnings of modern dental medicine. However, classical radiological techniques still depict this information in two dimensions. Three-dimensional radiological diagnostics enables the dentist to acquire accurate spatial information. However, regular utilization of this technology has been limited by the high equipment cost and the radiation exposure, which is not justifiable in all indications. Therefore, these systems have essentially developed under radiological considerations and do not meet the dentist’s needs for pathological assessment.

The GALILEOS system that has been scientifically tried and proven at the University of Cologne is the first method that enables the dentist to perform three-dimensional diagnostics in dental radiology. All indications in which cone-beam volumetric imaging is indicated in the oro-maxillofacial area are excellently described in this atlas. The numerous, well-documented case examples provide the new user with an orientation, particularly with regard to the recognition of secondary findings, since the entire facial cranium is always documented in a single image.

However, in addition to diagnostics, the use of this three-dimensional information is equally important for the course of further treatment. The oral surgery, orthodontic and implantological therapy options are presented with numerous examples. The rare indications for computer-assisted navigation or orthognathic surgery also illustrate the options available in system applications.

In this work, the team of authors with Prof. Zöller discuss the scientific studies carried out in recent years and demonstrate the utilization of the technique, both scientifically and in practice, using numerous patient examples. Modification of three-dimensional image data for dental radiology thus adds a new therapeutic dimension for the dentist. To meet the increasing demands of our patients for minimally invasive procedures and optimal restoration of lost or damaged dental substance, three-dimensional diagnostics with familiar dental imaging is another important tool for high-quality dentistry.

Prof. Dr. Fouad Khoury
Contributors

Bert Braumann, Mitra Saffar
Department for Orthodontics
University of Cologne
Kerpener Str. 32
D-50931 Köln, Germany

Rainer Haak, Esther Lowden
Department for Reconstructive Dentistry
University of Cologne
Kerpener Str. 32
D-50931 Köln, Germany

Timo Dreiseidler, Lutz Ritter,
Robert A. Mischkowski,
Jörg Neugebauer, Martin Scheer,
Philipp Scherer, Rusbeh Shirani,
Max Zinser, Joachim E. Zöller
Interdisciplinary Outpatient Department
for Oral Surgery and Implantology and
Department for Craniomaxillofacial
and Plastic Surgery, University of Cologne
Kerpener Str. 32
D-50931 Köln, Germany

Joachim Hey, Jochen Kusch
siCAT GmbH & Co. KG
Brunnenallee 6
D-53177 Bonn, Germany

Erwin Keeve
Center of Advanced European Studies
and Research (caesar)
Surgical Systems Laboratory
Ludwig-Erhard-Allee 2
D-53175 Bonn, Germany
## Technology

1. **Fundamentals of Cone-beam Volumetric Imaging Technology**
   - 1.1 Computed Tomography 3
   - 1.2 Cone-beam Volumetric Imaging 7
   - 1.3 Use of Cone-beam Volumetric Imaging in the Operating Room 9
   - 1.4 Use of Cone-beam Volumetric Imaging in Dentistry 10
   - 1.5 The Imaging Sequence in Cone-beam Volumetric Imaging 14
   - 1.6 Visualization of the Data 17
   - 1.7 Application Software for Cone-beam Volumetric Imaging Systems 22
   - 1.8 References 22

2. **Image Quality: Requirements and Influencing Factors**
   - 2.1 Definition of Image Quality 23
     - 2.1.1 Dynamic Range/Detector Contrast 23
     - 2.1.2 Sharpness 24
     - 2.1.3 Noise 25
   - 2.2 Methods for Evaluating Image Quality 25
     - 2.2.1 Subjective Methods for Quantification of Image Quality 26
   - 2.3 Image Quality Requirements 26
     - 2.3.1 Derived Requirements for Cone-beam Imaging in Dental, Oral and Maxillofacial Medicine 27
   - 2.4 Factors Influencing Image Quality 27
     - 2.4.1 Physical Factors 27
     - 2.4.2 Patient Positioning 28
     - 2.4.3 Duration of Imaging 29
     - 2.4.4 Scanning Parameters 30
     - 2.4.5 Body Mass Index 31
     - 2.4.6 Age 31
     - 2.4.7 Metallic Restorations 32
   - 2.5 Examples of Artifacts and Unsatisfactory Images 33
     - 2.5.1 Metal Artifacts 33
     - 2.5.2 Movement Artifacts 34
   - 2.6 References 35
Diagnostics

3 Dental Anomalies

3.1 Anomalies in Tooth Number 39

3.1.1 Hypodontia 39

3.1.2 Hyperdontia 41

3.2 Dental Morphological Anomalies

3.2.1 Microdontia 48

3.2.2 Macrodontia 49

3.2.3 Root Dysplasia 49

3.2.4 Root Resorption 50

3.3 Summary 52

3.4 References 52

4 Impacted Teeth

4.1 Ectopic and Impacted Wisdom Teeth 53

4.2 Other Ectopic Teeth 57

4.2.1 Ectopic Incisors 57

4.2.2 Ectopic Maxillary Cuspids 57

4.2.3 Ectopic Mandibular Cuspids 60

4.2.4 Ectopic Premolars 61

4.2.5 Ectopic Molars 62

4.3 Eruption Disturbances and Ankyloses 63

4.4 Resorption of Adjacent Structures 64

4.5 General Eruption Disturbances 65

4.6 Summary 66

4.7 References 67

5 Pathological Bone Lesions

5.1 Inflammatory Cysts 70

5.1.1 Radicular Cysts 70

5.1.2 Residual Cysts 71

5.2 Developmental Odontogenic Cysts 71

5.2.1 Follicular Cysts 71

5.2.2 Keratocystic Odontogenic Tumor (Formerly Keratocyst) 72

5.3 Odontogenic Tumors 73

5.3.1 Ameloblastoma 74

5.3.2 Adenomatoid Odontogenic Tumor 74

5.3.3 Odontoma 75

5.4 Osteogenic Tumors 75

5.4.1 Cemento-ossifying Fibroma 75

5.4.2 Osteoma and Exostosis 77

5.5 Non-neoplastic Lesions 77

5.5.1 Fibrous Dysplasia 77

5.5.2 Central Giant Cell Granuloma 78
5.6 Malignant Tumors 78
  5.6.1 Osteogenic Sarcoma 78
  5.6.2 Squamous Cell Carcinoma 79
  5.6.3 Plasmocytoma 80
5.7 Avascular Bone Necrosis following Bisphosphonate Therapy 80
5.8 Pseudocysts of the Jaw 82
5.9 Summary 83
5.10 References 83

6 Periodontal Diseases 85
  6.1 Gingivitis 85
  6.2 Periodontitis 85
    6.2.1 Chronic Periodontitis 86
    6.2.2 Aggressive Periodontitis 86
  6.3 Periodontitis as a Manifestation of Systemic Disease 86
  6.4 Necrotizing Periodontitis 87
  6.5 Periodontal Abscess 87
  6.6 Periodontal/Endodontal Lesions 87
  6.7 Developmental or Acquired Deformations and Conditions 88
  6.8 Diagnostic Value of Cone-beam Volumetric Imaging 89
  6.9 References 90

7 Caries 91
  7.1 Background 91
  7.2 Diagnostic and Therapeutic Strategy 92
  7.3 References 95

8 Orthodontic Diagnostics 97
  8.1 Orthodontic Radiological Diagnostics 97
  8.2 Dentoalveolar Malpositioning 98
    8.2.1 Lingual/Palatinal Position 98
    8.2.2 Rotations 99
    8.2.3 Dental Midline Discrepancies 100
    8.2.4 Transposition 100
    8.2.5 Eruption Disturbances 101
  8.3 Malpositions of Groups of Teeth 103
    8.3.1 Narrow Germ Position 103
    8.3.2 Posterior Cross-bite 105
  8.4 Skeletal Deviations 105
    8.4.1 Lateral Cephalographs 105
    8.4.2 Asymmetries 110
  8.5 Summary 110
  8.6 References 111
9 **Traumatology**

9.1 Dentoalveolar Injuries

9.1.1 Tooth Fractures
9.1.2 Luxation, Subluxation and Exarticulation
9.1.3 Alveolar Process Fracture

9.2 Fracture of the Visceral Cranium

9.2.1 Fracture of the Mandible
9.2.2 Midfacial Fractures
9.2.3 Fractures of the Frontal Sinus

9.3 References

10 **Diseases of the Maxillary Sinus**

10.1 Introduction
10.2 Anomalies
10.3 Maxillary Sinusitis
10.4 Foreign Bodies
10.5 Cysts
10.6 Tumors and Tumor-like Diseases
10.7 Trauma
10.8 References

11 **Diseases of the Salivary Glands**

11.1 Introduction
11.2 Sialolithiasis
11.3 References

12 **Diseases of the Temporomandibular Joint**

12.1 Pathology of the Temporomandibular Joint

12.1.1 Developmental Disorders
12.1.2 Primary Acquired Diseases
12.1.3 Secondary Acquired Diseases

12.2 References

13 **Craniofacial Malformations and Syndromes**

13.1 Cleft Lip and Palate

13.1.1 Special Symptoms in the Region of the Visceral Cranium
13.1.2 Special Diagnostics

13.2 Syndromes

13.2.1 Apert Syndrome (Acrocephalosyndactyly Syndrome)
13.2.2 Cleidocranial Dysostosis (Scheutauer–Marie–Sainton Syndrome)
13.2.3 Goldenhar Syndrome (Oculoauriculovertebral Dysplasia)

13.3 Mandibular Hypoplasia in Osteomyelitis
13.4 References
3 Dental Anomalies
   Mesiodens
   Ectopic premolar
   Ectopic molar
   Macrodontia
   Root resorption of molar

4 Impacted Teeth
   Third molar, 18-year-old patient
   Third molar, 26-year-old patient
   Third molar, 35-year-old patient
   Third molar, 47-year-old patient
   Third molar, 55-year-old patient
   Third molar, 75-year-old patient
   Third molar impacted in maxillary sinus
   Impacted incisor
   Impacted canine
   Impacted premolar
   Impacted molar
   Root resorption of incisors

5 Pathological Bone Lesions
   Radicular cyst
   Residual cyst
   Follicular cyst
   Keratocystic odontogenic tumor
   Ameloblastoma
   Odontoma
   Osteoma
   Central giant cell granuloma
   Osteogenic sarcoma
   Squamous cell carcinoma
   Osteonecrosis of the mandible
   Osteonecrosis of the maxilla

6 Periodontal Disease
   Chronic periodontitis

7 Caries
   Caries

8 Orthodontic Diagnostics
   Rotation
   Transposition
   Anterior crowding

9 Traumatology
   Mandibular fracture and dentoalveolar trauma
   Double mandibular fracture; paramedian and condyle
   Bilateral mandibular condyle fracture
   Double mandibular fracture; angle and condyle
   Orbital floor fracture
   Zygomatic fracture
   Nasal fracture
   Le Fort I fracture

10 Diseases of the Maxillary Sinus
    Aplasia of the left maxillary sinus
    Maxillary sinus septa
    Maxillary sinus septa edentulous
    Acute maxillary sinusitis
    Chronic maxillary sinusitis
    Foreign body in the maxillary sinus

11 Diseases of the Salivary Glands
    Sialolithiasis

12 Diseases of the Temporomandibular Joint
    Hypoplasia of the TMJ
    Osteoarthritis of the TMJ
    Ankylosis of the TMJ

13 Craniofacial Malformations and Syndromes
    Unilateral cleft lip and palate
    Goldenhar syndrome

DVD: Examples of 3D Assessment
14.1.1 Quantitative Evaluation of Bone Availability

Three-dimensional diagnostics provides a measurement feature for metric analysis. Since the imaging of the slices has already been metrically calibrated, it is not necessary to use a reference ball for calibration, as required in the panoramic tomograph. Bone availability can be determined in the horizontal and vertical dimensions using the measurement function. However, in addition to a purely quantitative analysis, it is also important to be oriented as to the position of the prosthetic device when planning a procedure. This can be done using a classic drill template by depicting the drill sleeves attached by the dental technician or by using an x-ray template (Figure 14-1). The latter results from the prosthetic proposal of the dental technician (backward planning), implemented in a radiological template containing barium sulfate, which is radiopaque in the image. Even when sufficient bone is available for implant insertion, it may not be possible to utilize it if the positioning could lead to difficulties with the prosthetic axis. In using a prosthetic proposal, the best implant position can be selected without requiring further augmentative procedures (Figure 14-2).

14.1.2 Qualitative Evaluation of Bone Availability

A surgeon who is aware of the bone quality can plan the procedure, particularly for drilling pilot holes. The often highly cortical structure in the posterior mandibular area abuts the soft spongoid medullary cavity area. Depending on the cutting behavior of the drill, a large amount of force may be needed to prepare the cortical bone. After preparing the implant cavity in the cortical bone, it is very easy to make the preparation too deep in the subsequent soft sections of the spongiosa, resulting in damage to anatomical structures (Figure 14-3).
If the bone in the mandible is very cortical, preoperative diagnostics also permits the planned use of intermediate drills to ensure very careful preparation. The cortical structures of the mandible particularly can yield bone chips for use in regional augmentation where bone availability is reduced (Figure 14-4).

If osteotomes are used for implant bed preparation, in particular in the maxilla, CBVI provides precise information on the trabecular structure of the bone. The optional use of a bone condenser can be precisely planned (Figure 14-5). If cortical structures predominate, one can resort to classical drill preparation early on, and complications associated with cortical damage and consequent bone resorption can be reduced.²