H. W. Anselm Wiskott

FIXED PROSTHODONTICS
PRINCIPLES AND CLINICS

QUINTEESSENCE PUBLISHING
London, Berlin, Chicago, Tokyo, Barcelona, Beijing, Istanbul, Milan,
Moscow, New Delhi, Paris, Prague, São Paulo, Seoul and Warsaw
Foreword

This book was written for dental students. It is intended to guide the prospective practitioner towards a scholarly approach to clinical problems. As such, it deals with the principal concepts and clinical steps of fixed prosthodontics.

The text was laid out to provide the reader with a broad view of the field and then concentrate on the essentials of restorative dentistry using fixed prostheses. It also involves the interrelationships between basic sciences (as discussed in Oral Environment), the clinical disciplines of periodontics, orthodontics, operative dentistry and implantology (in Preprosthetic Phase) and the realm of fixed prosthodontics (in Prosthetic Phase).

In the chapters we will discuss the scientific background first and then move to clinical applications. In analogy with other human endeavors, prosthetic dentistry can be conducted at the strategic, the operational and the technical levels. We will address all three levels, but qualified as follows. First it is recognized that while the underpinning scientific evidence is quite homogenous, the strategic options at the planning stage are often numerous.

This equally applies to the operational decisions during the development of a treatment sequence and to the technical level, that is, the clinical techniques applied during execution. Second, a textbook should be both a learning and a teaching aid, thereby implying that it must provide the teacher with something to teach. It is therefore recommended that the workflows described in the clinical sections be adapted to optimally suit individual needs. Third, the present text does not recommend any specific brands but only describes procedures using generic terminology. This acknowledges the availability of many products of superior quality without the need for an author to direct the clinician to a specific make.

Besides the scientific background and the clinical steps, many chapters also include a historical perspective on the topics presented. As a medical discipline, Dentistry has a long and distinguished history in which a host of researchers and clinicians built the body of evidence that supports contemporary scientifically-based treatment options. In this author’s opinion, paying tribute to our predecessors and acknowledging their merits should be part of an academic approach to dental education.

Texts that aim at conveying organized knowledge must be laid out in a methodical fashion. The subject matter and the terminology must be introduced to the reader in an orderly sequence. In this regard, attention was focused on structuring the chapters so that later chapters build upon the information that was provided in earlier sections. In line with this principle, the text is abundantly cross-referenced. In the few instances where breaks were included into logical sequencings, those are clearly indicated to the reader.

This text aims at conveying sometimes arduous and complex notions to clinicians in the early phases of their professional development. At times this may require that first order approximations be made and that not all idiosyncrasies, exceptions, or clinical intricacies be considered individually – there is a limit to the amount of information that can be included in a chapter without blurring the message. Also, the author considers himself a friend of proper terminology. Therefore whenever applicable, the Glossary of Prosthodontic Terms will be used as reference – streamlining terminology helps in avoiding confusion and misunderstanding. Still, terminology should not be unnecessarily complex – referring to ‘airborne particle abrasion’ for a process which the entire world calls ‘sand-’ or ‘grit-blasting’ imposes unnecessary wordiness to the reader. Similarly, denoting an artificial crown by the word string ‘single unit fixed dental prosthesis’ may be correct according to some authorities but needlessly burdens a text. Further, whenever applicable, the reader will be provided with synonyms for a given term. ‘Synonym’ is used throughout as it is understandable to the broad readership, although ‘alias’ or ‘AKA’ (‘also known as’) might be preferable, as they do not imply a 100% duplication of the meaning but still allow some leeway between the different exceptions.

Principles and clinical situations are all explained using diagrams and it is fully acknowledged that those are idealized views of an often more complex reality. On the upside though, schematic views are ideally suited to direct the reader’s attention onto specific elements as extraneous aspects are largely out of focus.

Last, with the exception of chapter 3 (it is difficult to explain color in whiter shades of pale), the artwork is kept in black and white format. This is to reduce printing costs to a bare minimum and to allow a wide distribution of the book among students.
Acknowledgements

First and foremost, I am indebted to my wife Yolande – my companion and friend for many years. Besides being a superb mother to our two daughters, her love and enduring support have been most rewarding. Second, my gratitude is expressed to Drs Marie-Christine and Peter Dulgurov for their indefectible friendship. The friendly working atmosphere in their company has been an enjoyable experience throughout.

This text reflects years of lectures, conversation and debate with teachers, colleagues and friends (not necessarily mutually exclusive). While it would be impossible to name them all, it is the author’s wish to acknowledge the direct or indirect contribution of the following individuals.

First, Dr Robert Faucher to whom this book is dedicated for his questioning, his incisiveness and his healthy disrespect for any form of dogma. Then the late Dr Sigurd Ramford and Dr Raul Caffesse at the University of Michigan in Ann Arbor. My gratefulness extends to both for developing and maintaining a graduate program in periodontics, of which an important part consisted in conveying the importance of structured literature surveys. I am also indebted to the late Dr Robert Moyers who spent countless hours teaching me the nuts and bolts of orthodontic bracket placement and wire bending. My grateful appreciation is extended to Drs Edith Morrison, Gunnar Svanberg and Walter Loesche for sharing their insights on experimental microbiology. Special thanks also to Dr Joseph Clayton for his rocky but fruitful introduction to occlusal concepts and applications.

The author was fortunate to spend three further years under the guidance of Dr Ralph Yuodelis and Jack Nicholls at the University of Washington in Seattle. The education was both practical and theoretical, and definitively established the relationships between fixed prosthodontics, periodontics and material science and engineering. The teaching staff was knowledgeable, open minded and helpful. My deep gratitude specifically goes to the late Drs Saul Schluger and William Ammons.

A number of other individuals have brightened my professional career. In this regard, I am indebted to Drs Susanne Scherrer and Claude Crottaz for their unyielding support; to the late Dr Jean-Noël Nally and Dr Jacques Holz for demonstrating leadership and steadfastness; to Dr Hans Thiel for introducing me to real world of dentistry, and to Messrs Alwin Schönenberger and Roger Renevey for their meticulous laboratory work. My gratitude is extended to Dr Urs Belser for suggesting that this book be written.

My appreciation also goes to our colleagues at the laboratory of applied mechanics at EPFL in Lausanne, Switzerland.

A variety of websites were used during the writing of this text. Besides “general purpose” sites such as www.thefreedictionary.com and www.wikipedia.org, a number of other sites devoted to more specific aspects also provided information. The author expresses his gratitude to all those who have selflessly constructed websites to share their knowledge with the internet community (whenever feasible, they are referenced in the bibliography). A special mention goes to Dr Martin Spiller (www.doctorspiller.com) for his unconventional approach and refreshing tone when bringing dental medicine to the general public.

Many thanks also to all those who have contributed photographs.

The text is unquestionably more readable due to the editorial changes of Mrs Lotika Singha, who was able to convert the author’s convolute, intricate, and at times confused sentences into a phrasal stream that is pleasant to read.

Likewise the friendly support of the editorial staff at Quintessence during the layout and proofreading stages is greatly appreciated.
Contents

INTRODUCTION

CHAPTER 1

The Prosthodontic Environment 1

- 1.1 Introduction 1
- 1.2 Scope of chapter 2
- Part 1 Lost and defective teeth 2
- 1.3 Prevalence and causes of tooth loss 2
- 1.4 Defective teeth 8
- 1.5 The need and demographics of fixed versus removable prosthodontics 9

Part 2 The realm of fixed prosthodontics 12

- 1.6 Prosthetic dentistry and its subspecialties 12
- 1.7 Elementary principles of fixed prosthodontics 13
- 1.8 The fixed prosthodontic workflow 17
- 1.9 In fine… 18
- References 18

ORAL ENVIRONMENT

CHAPTER 2

Anatomy and Pathophysiology 21

- 2.1 Scope of chapter 21
- 2.2 Terminology 21
- 2.3 Teeth and periodontal support 22
- 2.4 Dental arches 32
- 2.5 Head 35
- References 41

CHAPTER 3

Esthetics and Color 43

- 3.1 Introduction 43
- 3.2 Scope of chapter 44
- 3.3 Esthetics, cosmetics, and normal anatomy 44
- 3.4 Esthetic parameters as perceived by patients and dentists 45

PART 1

Constructing a smile 45

- 3.5 Objective 46
- 3.6 Constraints 46
- 3.7 Setting the maxillary central incisors 46
- 3.8 Tooth arrangement 48
- 3.9 Incisors 49
- 3.10 Gingival esthetics 51
- 3.11 Summary 52

PART 2

Color 53

- 3.12 Light and color perception 53
- 3.13 Color spaces 56
- 3.14 The color of teeth 61
- 3.15 Measuring color 63
- 3.16 The role of illumination 63
- References 65

PART 4

Forces and Mastication 69

- 4.1 Introduction 69
- 4.2 Scope of chapter 69
- 4.3 Mastication 70
- 4.4 Neurological controls 76
- 4.5 Forces generated during clenching and chewing 83
- 4.6 Bruxism 87
- 4.7 Long-term forces 88
- 4.8 Clinical implications 91
- References 92

PART 5

Mandibular Movements and Functional Occlusion 97

- 5.1 Introduction 97
- 5.2 Scope of chapter 98
- Part 1 Functional anatomy of the temporomandibular joint 98
- 5.3 The disc 98
- 5.4 Articular surfaces 100
- 5.5 Synovial membrane 101
- 5.6 Ligaments and capsule 101
5.7 Joint remodeling 102
Part 2 Jaw movements 102
5.8 Envelope of motion 102
5.9 Posterior guidance – temporomandibular joints 104
5.10 Anterior guidance – anterior teeth, disclusion 108
5.11 Mandibular positions 108
5.12 Interarch occlusal contacts 111
5.13 Vertical dimension of occlusion 117
Part 3 Historical perspective 119
5.14 Early authors (1800–1960) 119
5.15 The advent of anterior disclusion mechanics 121
5.16 Gnathology 121
5.17 In fine… 123
References 123

CHAPTER 6
Materials and Structures 127

6.1 Introduction 127
6.2 Scope of chapter 128
Part 1 Structures 128
6.3 Tooth as a supporting structure 128
6.4 Fracture 133
6.5 Strength 136
6.6 Models and modeling 140
Part 2 Biologic compatibility 144
6.7 Testing for biocompatibility 144
6.8 Prevalence of adverse reactions 148
6.9 Biocompatibility of metals 149
6.10 Biocompatibility of resin-based materials 155
6.11 Biocompatibility of ceramic materials 159
6.12 In fine… 160
References 161

TREATMENT PLAN
CHAPTER 7
Treatment Planning 167

Part 1 Introduction 167
7.1 Indications for fixed dental prosthesis 167
7.2 Scope of chapter 169
7.3 Project management 170
Part 2 Diagnosis 171
7.4 General diagnosis 171
7.5 Dental diagnosis 179
Part 3 Treatment objectives 185
7.6 General principles 185
7.7 Setting treatment objectives for single teeth 188
7.8 Setting treatment objectives for small edentulous spaces 190
7.9 Compounding factors 193
7.10 Setting treatment objectives for multiple missing teeth 200
Part 4 Treatment sequence 201
7.11 Establish preprosthetic arches: preprosthetic phase 202
7.12 Construct the prosthesis: prosthetic phase 203
Part 5 Prospective diagnosis 204
8.1 Introduction 209
8.2 Scope of chapter 218
8.3 Periodontal surgery 219
8.4 Principles of osseous surgery 223
8.5 Surgical crown exposure (crown lengthening) 227
8.6 Augmenting soft tissue volume 237
8.7 Covering a local gingival recession (connective tissue and pedicle flap) 243
8.8 In fine… 250
References 251

CHAPTER 8
Orthodontics 257

9.1 Introduction 257
9.2 Scope of chapter 258
9.3 Indications for prerestorative tooth movement 259
CHAPTER 14
Adhesive Restorations 477

14.1 Introduction 477
14.2 Scope of chapter 477
Part 1 Principles of bonding 478
14.3 Bonding to enamel 478
14.4 Bonding to dentin 480
14.5 The clinics of dentin bonding 482
14.6 Principles of dentin bonding revisited 488
14.7 The chemistry of dentin bonding polymers 488
Part 2 Laminate veneers 491
14.8 Introduction 491
14.9 Applications 492
14.10 Principles of preparations for laminate veneers 493
14.11 Color corrections using laminate veneers 496
14.12 Patient appraisals and long-term outcomes 497
14.13 The clinics of laminate veneers 499
Part 3 Bonded multiunit prostheses 506
14.14 Field of application, advantages, limitations, contraindications 508
14.15 Abutment design and frameworks 508
14.16 Long-term survival of resin-bonded fixed dental prostheses 510
14.17 The clinics of resin-bonded fixed dental prostheses 510
14.18 Alternative frameworks 511
14.19 Long-term survival of FR-FDPs 516
References 517
Appendix: Bonding monomers, polymerization additives, etchants, and solvents 521

CHAPTER 15
Provisional Restorations 529

15.1 Introduction 529
15.2 Scope of chapter 529
Part 1 Principles 529
15.3 Objectives and indications of provisional treatment 529
15.4 Drawbacks of provisional restorations 534
15.5 Materials for provisional restorations 535
Part 2 Clinics 540
15.6 Workflow for fabricating provisional restorations 540
15.7 Provisional restorations for laminate veneers 553
15.8 Adapting and repairing provisional restorations 555
References 556

CHAPTER 16
Impressions 559

16.1 Introduction 559
16.2 Scope of chapter 559
Part 1 Principles 560
16.3 Concepts and definitions 560
16.4 Materials 561
16.5 Trays 565
Part 2 Clinics 567
16.6 Overview of materials and techniques 567
16.7 ‘One step, double mix’ technique 568
16.8 Clinical workflow 569
References 578

CHAPTER 17
Occlusal Relationships 581

17.1 Introduction 581
17.2 Scope of chapter 581
17.3 Principles governing occlusal schemes 582
Part 1 Instruments and procedures 583
17.4 Articulators 583
17.5 Facebows 589
17.6 Recording interarch relationships 592
17.7 Effects of articulator settings on occlusal anatomy 595
Part 2 The clinics of conformative restorations 598
17.8 Overview 598
17.9 Workflow for conformative occlusions 600
Part 3 The clinics of reorganized restorations 607
17.10 Workflow for reorganized occlusions 607
17.11 Design and location of occlusal contacts 610
References 613

CHAPTER 18
Laboratory Procedures 615

18.1 Introduction 615
18.2 Scope of chapter 615
Part 1 Working models 616
18.3 The production of working models 616
18.4 General considerations on working models 616
18.5 Technical workflow in model fabrication 621
18.6 In fine… 627
Dr Wiskott graduated in 1977. After three years of private practice and internship he earned a doctorate in dental medicine. He then transferred to the United States and in 1982 he received a Master of Science degree in periodontics from the University of Michigan. In 1989 he was awarded a Master of Science in Dentistry degree from the University of Washington, specializing in fixed prosthodontics, and in 1998 a PhD degree in biomaterials. Dr Wiskott is the author of about 100 scholarly articles. He teaches and practices dentistry in Geneva, Switzerland. He and his wife Yolande have two daughters: Alexa-Sea and Kim-Aurora.
The Prosthodontic Environment

1.1 Introduction

Today, a large proportion of the aging population is motivated to “stay young”. Besides alluding to physical fitness and attractiveness, this attitude also includes the maintenance of a functional and cosmetically appealing dentition. In this context, losing one or several teeth is a traumatic event and many people experience difficulties in coming to terms with their loss. The immediate consequences of tooth loss are functional (the person is unable to chew or speak properly) as well as cosmetic (facial appearance is adversely affected). In the long term, tooth loss often impairs the person’s self-image, emotional balance, and overall quality of life.

Tooth loss is not a disease per se. Still, it often leads to disabilities of varying degrees of severity. Therefore affected individuals should be considered as persons with a disability who seek a prosthodontist’s help to re-establish the original morphology and functional capabilities of their dentition.

Prosthodontics may be primarily regarded as the discipline of dentistry concerned with the replacement of missing teeth. It is commonly subdivided into fixed and removable prosthodontics. As the name implies, removable prosthodontics refers to treatment modalities using prosthetic devices that can be removed from the mouth for cleansing and maintenance procedures. Fixed prosthodontics encompasses those modes of treatment in which the replacement teeth are permanently placed in the oral cavity (Fig. 1-1).

The nature of a discipline involving prosthetics (as opposed to regenerative approaches) entails that lost tissues are replaced with artificial substitutes. This in turn implies that ‘alloplastic’, that is, non-biologic, materials

Fig. 1-1a,b Fixed versus removable prostheses

a The classic fixed restoration is permanently cemented onto conically prepared abutment teeth.

b Removable prostheses derive their support from bases and flanges. They are stabilized by clasps on the remaining dental arch segments.
Fig. 8-54a–d Harvest the transplant

a Position the tinfoil and scribe the outline.

b Dissect the superficial mucosa to about 0.5 to 1 mm in thickness. Lift the “trap door”.

c Incise to the bone and remove the connective tissue.

d Suture the superficial flap back into place.

Step #7 Suture the transplant Now suture the transplant onto the bone bed and the roots. Start by passing the needle in palatobuccal direction between the two premolar crowns and place a first bite inside the fibers in the apical aspect of the flap (Fig. 8-56a). The needle is then threaded between the first premolar and the canine and the suture tied on the palatal aspect of the first premolar. Proceed in the same fashion with a second thread, which is centered on the canine (Fig. 8-56b). These sutures should not be overly tight as you do not want to cut off lateral diffusion inside the connective tissue. Their sole purpose is to stabilize the transplant during the initial days of healing. The palatal knots are shown in Figure 8-57b.
8.7 Covering a local gingival recession (connective tissue and pedicle flap)

Step #8 Suture the flap Last the flap is sutured as shown in Figure 8-57, that is, coronal to its original position (note the differences in height of the mucogingival line). For suturing, the flap will be stretched somewhat but not “overstretched”. This requires that it be well mobilized at its base so that it can be moved around freely and no major backward pull is perceivable. Use interrupted knots and 3-0 or 4-0 suture material.

8.7.4 Class II recessions

The treatment of class II recessions requires double pedicle flaps (Fig. 8-58a). These flaps are actually a more advanced variant of the technique demonstrated above (steps #1 to #8). The essential differences are as follows. First the tissue is incised along the lines shown in Figure 8-58a in which we are actually preparing two flaps: the distal flap (centered on the premolar recession) and the mesial flap. The incision around the canine recession

Fig. 8-56a,b Suture the transplant
a Apically the sutures are hooked into the loose fibers that were left bare during initial flap preparation.
b Large sling sutures are placed and tied on the palatal aspects. These sutures should not be over-tightened to allow proper diffusion of nutrients into the transplant.

Fig. 8-57a,b Suture the flap
a To adequately cover the transplant, the flap is sutured coronal to its original location.
b Palatal aspect and view of the sutures stabilizing the transplant.
The basic steps of the impression procedure are:

1. Secure the transfer coping to the implant head.
2. Take an impression using an elastomeric material.
3. Release the coping from the implant head and remove the tray.
4. Turn the tray upside down and fasten an implant analog to the “underside” of the transfer coping.
5. Pour the impression and fabricate a working model.

Hence two of the most tedious aspects of impression taking of natural teeth are eliminated. First, there is no need for exposing the margin by gingival deflection and, second, the risk of moisture contamination during the procedure is minimal.

Before starting, the clinician needs to determine whether an open or a closed tray technique will be used.

13.12.1 Open tray technique

The open tray technique is the traditional method of securing impression copings to the implant head. In this approach, the copings are screw-fastened to the implant heads, which, in turn, requires that the copings be unfastened before the impression is removed from the mouth (as in Fig. 13-21). Removal is made possible by using a tray provided with openings located on top of the screw heads, thereby providing access for screw release and tray removal (hence the name ‘open tray technique’).

Procedure The procedural steps are illustrated in Figure 13-34. Figure 13-34a shows the screw-fastening of two transfer copings on the implant heads. Note how the transfer copings fit onto the implant heads in a male-female keying relationship. On Figure 13-34b the operator checks that the opening in the tray allows appropriate access to the screw heads. Then the opening is closed with a sheet of wax, the tray is filled with impression material and seated onto the arch (Fig. 13-34c). After the impression material has set, the wax sheet is removed and the transfer copings are unscrewed from the implant heads (Fig. 13-34d).

13.12.2 Closed tray technique

The open tray technique is somewhat tedious in that the impression tray must be specially prepared. Therefore most manufacturers have designed copings that will securely snap onto the implant heads without the need for additional screw-fastening. Since no perforation of the tray is necessary, this method has been termed ‘closed tray technique’. Both techniques are similar in their duplicating accuracy.\(^7\)

Procedure The closed tray technique is illustrated in Figure 13-35. First a snap-on element that reversibly braces around the implant collar is clipped onto the implant head and then an antirotational element (i.e., the positioning cylinder) is inserted into the octagonal key of the connector. The combined action of both elements firmly positions the implant analog during subsequent pouring of the impression.

Independent of the type of connector, accurately positioning the transfer coping onto the implant head is a
Fig. 13-34a–d Open tray technique

a The transfer copings are screw-fastened into position.
b The tray's opening provides access to the coping screws.
c The opening is sealed with a wax plate and the impression is taken.
d The transfer copings are unscrewed from the implant heads and the impression is removed.

Fig. 13-35 Closed tray technique
The impression coping is clipped onto the implant head and the positioning cylinder is seated. After the impression material has set, the coping snaps off the implant head during tray removal.
Laboratory Procedures

16 to 19 g/cm³ range for high gold and in the 10 to 15 g/cm³ range for low gold alloys (the specific value must be provided by the manufacturer). As a rule we will use 50% of the required amount as new and 50% as recycled alloy from previous castings.

We are now ready to proceed with alloy melting and casting. The various heating methods have been discussed previously. The casting machines may be subdivided into two groups: centrifugal and air-pressure driven devices.

Centrifugal casting As the name implies, these machines will drive the molten alloy into the mold using centrifugal force. Thus they feature a rotating beam that spins around a vertical axle with the crucible affixed to one end. They are built so that they start spinning briskly thereby applying a high force during the initial turns. Rotation is generated by a coil which is rewound prior to the procedure and released at the time of casting. The beam itself has a clever design in that it is made of two articulating parts (technical term: broken arm). If blowtorch heating is used, this allows the operator to position the crucible in line with the flame, thereby facilitating the melting of the alloy. The design and working principle of a centrifugal casting machine are shown in Figure 18-37.

Whenever a dental alloy is brought to melting temperature in ambient air, a pellicle of oxides will form at the surface. Fortunately these oxides are light in comparison to the weight of the metal. Therefore the centrifugal force (which is proportional to the mass) is fairly inactive on these elements and they therefore tend to stay in the crucible. Nevertheless, these oxides can be eliminated while they are forming by sprinkling an oxide-absorbing chemical on the surface of the melt. Such a chemical is called flux. A most widely used flux for gold based alloys is sodium tetraborate (Na₂B₄O₇·10H₂O), also known as borax. Note, however, that there is no universal flux and that other classes of alloys may need appropriately formulated oxide scavengers.

Fig. 18-36 Thermal inertia The investment accumulates energy during heating of the oven (i.e., heat soaking), hence the delay in temperature increase in the center of the investment. Data from Jelenko Corp.

Air-pressure casting In the present context, ‘air pressure’ may mean positive or negative (i.e., vacuum) pressure or a combination of both. Typically such machines consist of an upper and a lower chamber. The upper chamber is the melting chamber, which houses the crucible and is heated by electrical means. The lower chamber is connected to a vacuum pump and is used to apply air pressure to the molten alloy.

Fig. 18-37a,b Broken arm casting machine
a Machine ready for casting with its spring rewound.
b Top view of same after the releasing pin has been dropped and the broken arm has straightened. The rotational movement generates the centrifugal force that drives the melt into the casting ring.

Figures 18-36 and 18-37 illustrate the thermodynamic process of casting. The temperature profile shows the gradual temperature increase during the heating process, with a distinct delay in the center of the investment due to thermal inertia. The crucible and melt are shown in Figures 18-37a and b, highlighting the design and working principle of the centrifugal casting machine.
cible, while the lower chamber is the casting chamber in which the investment mold is located. Both chambers are connected via a small channel featuring an obturator. For casting, the metal is placed into the crucible and both chambers are closed airtight. Under computer control, the metal is heated and brought to melting temperature. At this time, air is forced into the upper chamber and the obturator is opened. Simultaneously the melt is sucked into the lower chamber and fills the mold. After the chambers have been depressurized, they may be opened and the mold removed.

The advantage of these techniques lies in the possibility of using inert gasses such as helium or argon during the casting process. These gasses protect molten alloys, first and foremost titanium, from oxidation.

Box 18-1 Assessing the castability of a metal

Whenever a manufacturer develops a new dental alloy, one important aspect is the metal’s castability. To assess casting behavior, the metal is typically flowed into a mold whose intricate geometries and thin channels impede the progression of the molten alloy. By inspecting the resulting cast, the researcher may then rank the newly developed product relative to existing formulations. Ranking will be conducted in terms of progression (i.e., “how far has the alloy progressed inside the mold?”) and in terms of porosity (i.e., “what is the casting’s density in the thinner portions of the pattern?”). One early technique consisted in casting blade-type (i.e., thinning) patterns. Other, more sophisticated geometries proposed to quantify castability are shown in Figure 18-38.

Step #4 Final procedures

Having cast the metal, the mold is removed from the apparatus and immersed in water. This process is called quenching. Due to the sudden change in temperature and rapid steam generation, the investment breaks away from the casting. Ideally the casting should now present itself as shown in Figure 18-39.

When present, the dark surface of the casting is removed by pickling, that is, heating the discolored casting in acid solution until the oxide layer disappears. The pickling solution typically comprises chemicals of low pH such as sulfuric, hydrochloric, and nitric acids and is removed by flushing in a tap water. The restoration is separated from the sprue with a separating disk.

Fig. 18-38 Castability test patterns

a Grid pattern119,120 b Spiral121 c Multifiber pattern122,123 d MBS design124–126

Fig. 18-39 Casting upon devesting
Note the smooth, matte surface of the casting and its reproduction in the investment. Picture courtesy of PxDental Corp.
3/4 crown 393
4-META 491, 523
7/8 crown 393, 394
α-hemihydrate 617
β-hemihydrate 617
β-lactam 218
με : microstrain 361, 362

A
A - cephalometric point (defined) 36, 38
A - illuminant 55
Abutment 14, 391, 443, 532
Abutment – design 420
Abutment – dimensions 397
Abutment cylinder 443
Abutments – problem list 182
Abutments – treatment planning 186
Accuracy – impressions 560
Acesulfame-K 298
Acetaminophen 229, 275
Acetone 482, 484, 528
Acid production – bacteria 292
Acidogenic 292
Activator – polymerization 490, 491
Active disease – ideal arches 179
Active disease – problem list 182
Active element – biological 299
Active elements – orthodontics 273, 276, 279
ADA specification 4 635
ADA specification 5 630, 631
ADA specification 16 560
ADA specification 25 619
ADA/ANSI specifications 18, 19, 20 562
Addition silcones – setting reaction 563
Addition silcones 559, 561-565
Additive/subtractive fabrication 652
Add-on technique – waxing 634
Adhesive cementation 709
Adhesive mode 310
Adhesive resin 482
Adhesive restorations 477
Adverse/unwanted movement 275
Aerobic bacteria 210, 211
Agar diffusion test – biocompatibility 145, 148
Ala – extracranial landmark (defined) 37
Alginate hydrocolloid 559, 562, 567
Allergies – dental series 158
Allergies – metals 153
Allergies – standard series 158
Allergy/allergies 149, 152, 153, 158, 160, 172, 174, 228
Allogenous graft 377
Alloplastic graft 377
Amoxicillin 218
Amphiphilic – monomer 485
Anaerobic bacteria 210, 211, 216
Analog – condylar 105, 106, 584-589, 598, 612
Analog – implants 446, 447, 457, 458, 466, 468-470
Anchorage 309, 395
Anchorage – absolute 269
Anchorage – differential 268, 269
Anchorage – extracoronal 389
Anchorage – mixed mode 462
Angle, Edward Hartley 257
Angulated abutment 444, 445, 468, 469
Angulation – orthodontics 271
Annealing – wax 635
Anodic oxidation 349
ANS – anterior nasal spine (defined) 36, 38
Astringents 569
Azithromycin 217, 218
Anterior component of force 90
Anterior disclosional mechanics 35, 111-113, 121-123
Anterior guidance 32, 34, 108, 118, 182, 260, 279
Anterior jig 609
Anterior stop – occlusal records 608
Antibiotic coverage – implants 368
Antibiotics 174, 177, 178, 211-213, 217, 218, 228, 243, 292, 368, 722
Antiseptics 727, 728, 737
Astringents 569
Armamentarium 429
Articulator settings 595, 607
A-silicone 562
Astringent 297, 298
ASTM 67 344
ASTM D1321 634
Astringents 569
Attachment level – clinical 30
Auditory canal 99
Augmentation – soft tissue 237
Auto-curing 535
Autogenous graft 377
Autoglaze 670
Axis – extracranial landmark (defined) 37
Axis-orbitale plane 36, 37, 589, 591, 593, 598
Bleaching – adverse effects 302
Bleaching – home 305
Bleaching – in-office 303
Bleaching agents – chemistry 301
Bleeding points – periodontal surgery 230, 231
Blood clot 350
Blowtorch heating – casting 640
BMU (defined) 359, 360
Boyle gauge 533
Bolted joint 450, 451
Bolton – analysis 32
Bonded laminate 491
Bond – bone 339, 347, 352, 354, 355
Bond – metallic 628
Bond – metal-ceramic 632
Bond – molecular/atomic 632
Bond – metallic 632
Bond – bone 632
Bond – dental ceramic 632
Bond – bioactive 632
Bond – bioactive 632
Bone dehiscence 24
Bone – woven/lamellar 24, 25, 352
Bone deflection theory 264
Bone-to-implant contact (also see BIC) 160, 352, 353, 356, 452
Bonwill triangle 122
Boone gauge 278
Borax 646
Border movements 74, 103, 104
Bore (defined) 15, 346
Bore 341, 346, 350, 354, 364, 368, 370-377, 381, 446, 452, 453, 454, 468, 623, 624
BPO 490
Bracket – debonding 279
Bracket – positioning 270, 271
Bracket 258, 268-279, 282, 283
Brainstem 77, 78
Bränemark, Per Ingvar 339, 340, 368, 441
Breakage function (defined) 70, 73
Bridge 141, 389
Broken arm – casting machine 646
Bruxism 87
Buffer – saliva 293
Bupivacaine 229
Bur – diamond 425
Bur – hard metal 425
Burn-out part – Implants 443
Burn-out 637
Button 637
Ca.: circa: approximately 15
Ca.: circa: approximately 15
CAD-CAM 615, 649, 654, 655, 660
CAD-CAM – marginal accuracy 655
Calcium sulfate dehydrate 617
Calcium sulfate hemihydrate 617
Calculus 450, 463, 215, 216, 219, 223, 724, 725, 731, 733
Calliper 533
Camper’s line (defined) 37
Camper’s line/plan 38, 39, 108
Campmorquinone 155, 156, 490, 491, 526, 538
Camel guidance 115, 117
Cantilever (defined) 16, 141
Cantilever (also see Extension FDP) 15, 16, 140-142, 193, 358, 392, 402-405, 455, 465, 463
Cantilever-FDP – treatment planning 193
Cariology 289, 290, 298
CAS number 155
Castability 647
Casting machine – centrifugal 628, 646
Casting ring 636
Cast-on part 443
Catalyst – impression paste 559, 562
Evaluate boundary conditions – project 170
Exopolysaccharides 291
Exothermic – reaction 537
Expansion – linear 618, 633, 638, 639
Expansion – setting 618, 619, 621-623, 625, 636-639, 648, 671
Expansion – thermal 628, 632-634, 636-639, 648, 659, 661, 696
Experimental gingivitis in man 209
Extension FDP – treatment planning 193
Extension FDP (also see Cantilever) 16, 403, 405
Extension for prevention 409
External (defined) 22
Extracellular polymeric substance 212
Extracoronal anchorage 389
Extracranial landmarks 36
Extraction socket – healing 24
Extrinsic stain 299
Extrusion 267, 530

F
F2 – illuminant (defined) 55
Facebow 122, 581, 589-593, 601, 602
Facebow – kinematic 591
Facial nerve 77
Fatigue fracture – defined 134-136
Fatigue – failure 84, 134-136, 314, 320, 400, 406, 451, 452, 454, 538, 700
Fauchard Pierre 257
FDP: fixed dental prosthesis 10, 13, 393
FDP – cantilever 15, 16, 140-142, 193, 358, 392, 402-405, 455, 465, 463
FDP – configuration/design 16, 92, 128, 142, 179, 182, 190, 392, 405-417, 463, 507-515, 628, 631, 649, 733
FDP – cosmetics 237, 393, 405, 411, 414, 684
FDP – implant-supported 15, 80, 82, 168, 191-193, 341, 342, 354, 441-473
FDP – indications/planning/checking 16, 17, 169, 183, 186-190, 417-419, 469, 507-510, 533, 534, 543, 683-690, 735
FDP – full arch 403, 441, 456, 457, 460, 461
FPD – mechanics/function 73, 82, 133, 140, 189, 200, 390, 394-405, 441, 455, 471, 510, 512, 516, 532, 582, 585, 592, 715
FPD – mixed mode 192-194, 462, 463
FPD – segmented 200, 418, 441, 462
FPD – single unit 13, 16, 188, 191, 192, 204, 311, 392, 464
FPD – terminology 14, 390, 391

FEA (see finite element analysis)
Fenestration (defined) 23
Ferric sulfate/subsulfate 571, 572
Ferrule effect/principle 189, 311, 312, 314, 315, 417
Fiber (also see: gingiva-fibers or mucosa-fibers)
Fiber 63, 456, 513
Fiber – dentinal 481-488
Fiber – muscle 75, 119
Fiber – periodontal/gingival 88, 90, 91, 261, 355, 688
Fiber – reinforced post 316-320, 326-328
Fiber – reinforced FDP 512, 514, 515, 709
Fibonacci series 48
Fibrocartilage 100
Fibrous capsule – biocompatibility 151
Fifth generation – dentin bonding 487
Finish line 406, 407, 420, 422, 430, 432, 433, 436
Finishing – preparation 433
Finishing wire 275
Finite element analysis/model 132, 141-144, 396, 404, 480, 496
First generation – dentin bonding 480
First order bend/movement 270
Fit checker 549
Fitting surface 491
Fixed dental prosthesis : see FDP
Fixed prosthetic dentistry (defined) 12
Fixed vs. removable prosthetics – demographics 11
Fixture 443
Flap 222, 246, 249
Flap – apically repositioned 223
Flap – design 229
Flap – envelope 232
Flap – modified Widman 223
Flap – partial thickness 231
Flap – roll 238, 239
Flap curettage 223
Flat-to-flat connector 447, 448
Flextural strength 538
Flossing 732
Flow – wax 593, 635
Fluoroscence (defined) 62
Fluorescent lamp 54, 55
Fluorides 293-298, 304, 305, 309, 693, 696-698, 710, 727-729, 734, 736, 737
Fluorochrome 62
Fluorophore 62
Fluorosis 295
Flux – casting 646
Force – application of 24, 69, 70, 73, 75, 79-81, 85, 86, 92, 129, 132, 137, 141, 142, 232, 262, 263, 267, 273, 275, 279, 280, 310, 314, 326, 373, 375, 376, 393, 394, 403, 441, 448-455, 480, 559
Force – high-intensity 69, 74, 83, 84, 88, 89, 110, 118, 394, 455, 702
Force – low-grade 69, 80, 82, 88, 89, 90, 115, 193, 261, 265, 456

Elective – procedure 43
Electric heating – casting 640, 641
Electrodeposition 616
Electrodes – electrosurgery 220
Electrodes – EMG 76
Electroforming 616
Electromagnetic wave 53
Electromyography 76, 88
Electrosurgery 219, 220, 221, 569, 573
Electrosurgery – try-in 689
Elements – periodic table 656
Embrasure 392, 410
Emergence profile 413
Emergency phase 169, 201
Emotional imbalance – indications for FDP 168
Enamel – thickness 499
Enamel – bonding 478
Enamel etch 478
Engram 608
Envelope of motion 74, 102, 103
Epidemiologic studies 147
Epithelial attachment (defined) 28
EPS (see extracellular polymeric substance)
Equalizer – tooth contact 121, 122
Equilibrium – tooth position 89, 90
Error – negative 581
Error – positive 581
Erythrol 297, 298
Essential trace elements 149, 150
Esthetic pre-evaluate temporary 503
Esthetically sensitive zone 40, 226
Esthetics, gingival 51
Esthetics – ideal arches 181
Esthetics – measurement of 45
Esthetics – problem list 182
Estrogenicity 157
Etching – cementation 710
Ethanol 482, 484, 487, 528
Functional units (see also: WHO-criterion)

Functional tests – biocompatibility

Function – ideal arches

Full coverage

Full arch restoration

Full coverage

Functional arch

Functional arches

Functional arches – standards

Functional arches – treatment

G

Gamut (defined) 56, 57

Gape 84, 103, 180

Gates-Glidden drills 326

Gel state 561, 562, 567

General diagnosis (defined) 171

General factors (defined) 169

Geniohyoid muscle 74, 75

Genotoxicity/carcinogenicity test 146

Genus – bacteria 210

Gingiva (defined) 22, 354

Gingiva 17, 18, 22, 27-32, 46, 81, 144, 153, 189, 190, 200-204, 209, 218-226, 237, 241, 244, 275, 304, 307, 409, 410, 413, 414, 436, 460, 499, 500, 505, 508, 539, 551, 569, 571, 685, 689, 712, 721, 735, 737

Gingiva – attached/keratinized 24, 27, 28, 52, 223, 355, 377

Gingiva – cosmetics/color 51, 52, 197, 205, 227, 238, 243

Gingiva – free 24, 226, 243, 409, 410, 569, 573

Gingiva – marginal 27, 31, 144, 226, 412, 500, 530, 531, 572, 722

Gingiva – position/relocation 202, 204, 205, 218, 225-227, 534, 683

Gingiva vs. mucosa 354

Gingival biotype – flat-thick 31, 432

Gingival biotype – scallop-thin 31, 432

Gingival conditioning 531

Gingival index 209, 723

Gingival margin 27

Gingival recession 243

Gingival recession – Miller classification 244

Gingivectomy 219

Ginglumus (defined) 98

Glass transition temperature 392

Glass-ionomer cement (defined) 692, 693

Glass-ionomer cement 308, 310, 316, 327, 332, 399, 400, 471, 692, 693, 695-704, 707, 708, 714, 715

Glass-ionomer cement – fluoride release 698

Glass-ionomer cement – handling 707

Glennoid cavity 83, 98-104, 108, 110, 111, 582, 583

Glossopharyngeal nerve 77

Gloves 229

Glucan 291

Glucose 291, 294, 297, 298, 724

Glycosaminoglycans 26

Gnathology 121

Go - gonion (defined) 36, 38

Golden proportion 48

Gothic arch tracings 103

Graft (also see transplant) 245

Graft – healing 243

Graft – subepithelial connective tissue 238, 239, 240

Graft/grafting – bone 238, 366, 377, 379, 381

Gram positive/negative bacteria 210, 213, 218, 291-293, 297, 728

Green stage – ceramic 654

Griffith flaw 699

Grit-blasting – cementation 710

Grit-blasting – try-in 690

Group function 115, 117, 122, 455

Guidance –TMJ – anterior 104

Guidance –TMJ – posterior 104

Guided bone regeneration 379

Guided tissue regeneration 379

Guidepin – implant placement 374, 375

Guideplane – RB-FDP 509

Gummy smile 46, 197

Gypsum/gypsum product 561, 617, 636, 638, 644

Gysi’s point – hinge axis 592

H

Habitual mandibular position 119

Hanau’s quint 119

Handpiece 232, 234, 309, 326, 371, 372, 375, 381, 424, 427, 428, 433

Hard palate 21

Haversian remodeling 360

Head position – natural 37

Healing – tissue 226

Healing – osseous 339, 350-352, 359, 360

Heavy body – impression materials 568

Height-to-width ratio 50, 51

HEMA 480, 485, 487

Hemi-desmosomes 27

Hemolytic 145

Hex – connector 449

Hexagon – connector 449

Hibitane 727

Hierarchy of needs (defined) 43

High noble – metal 631

High speed instruments – bone surgery 233

Hinge axis 36, 37, 590-592, 601, 608

Hinge axis – arbitrary 591

Home bleaching 305

Homothetic reduction (defined) 406

Homothetic reduction 406, 411, 514, 515, 641, 643, 644, 652, 653, 656, 665

Hooekian domain – stress-strain diagram 130

Horizontal plane (defined) 22

Host factors 210, 292

Hoxworth’s lacuna 239

HSL – color system (defined) 57

Hue 56

Hyalinization, hyalinized tissue 263

Hyaluronic acid 101

Hybrid layer (defined) 481, 482

Hybrid layer 481, 482, 484, 487, 488

Hydraulic conductance 529

Hydrocarbon (defined) 593, 634, 695

Hydrogel 127, 561

Index
Hydrolysis (defined) 156
Hydrolysis 144, 155, 156, 480, 488
Hydrophilic monomer 481-489, 523-526, 694, 695, 702
Hydrosol 561
Hydroxyapatite 245, 296, 348, 349, 359, 360, 377, 480, 488, 693, 694, 698, 699, 725, 728, 729
Hydroxyapatite coating – implants 349
Hypoglossal nerve 77
Hypomochlion – orthodontics 267

I

Ideal arches 44, 179, 180, 183
Idealized contact scheme/occlusion 582
Idealized occlusion 111
Identalloy system 630, 631
Identifying needs – project management 170
Illuminant (defined) 55
Illumination 63
Immediate side shift (defined) 105
Immediate side shift (ISS) 105, 106, 117, 584-589, 595-598, 607, 612
Impaired chewing – indications for FDP 167
Impaired esthetics – indications for FDP 168
Impaired speech – indications for FDP 168
Implant – analogs 457, 468
Implant body 443
Implant cylinder 14, 15, 346, 356, 357, 364, 365, 368, 371, 376, 381, 441-447, 452, 460, 463, 465, 469-472, 628
Implant design 342
Implant emergence-morphology 354
Implant pillar 443
Implant placement – criteria for 365
Implant placement – guidelines 370, 371
Implant sites – problem list 182
Implant surgery-principles 242
Implant system 443
Implant systems – submersed vs. transmucosal 346
Implant-abutment alignment 346
Implant-anchored multi-unit FDPs – treatment planning 193
Implant-anchored prosthodontics 441
Implant-anchored single-unit FDPs – treatment planning 191
Implant-loading conditions 343
Implant-macrodesign features 345
Implant-microdesign features 347
Implants-criteria for success 343
Implants-surgical technique 368-382
Impression 559-579
Impression – implants 465
Impression – patient set up 574, 575
Impression – power mixing device 574
Impression – setting characteristics 562, 564
Impression transfer coping 457, 465
In vitro tests – biocompatibility 145
In vivo tests – biocompatibility 146
Incidence (defined) 2
Incisal guide-pin 122, 584, 585, 606, 610, 622
Incision – terminology 230
Incisive papilla 21
Index coping – alternative designs 605
Index coping – fabrication 602
Index copings – occlusal records 594, 596
Index of mobility 86, 87
Index of refraction 62
Indexing 447
Indications for FDP treatment 167
Indirect method – Foundation restorations 312
Induction – casting 640
Inertness – biocompatibility 152
Inferior (defined) 22
Inferior joint cavity – TMJ 100
Inflammation 25, 30, 52, 86, 90, 144, 146, 149, 177, 179, 182, 185, 209, 225-227, 236, 243, 244, 250, 251, 259, 261, 275, 324, 347, 408-410, 413, 414, 418, 500, 530, 539, 540, 555, 569, 571, 683, 684, 697, 704, 726, 733, 734, 736
Inhibitor – polymerization 156, 157, 491
Initial tests – biocompatibility 145
Initiator – polymerization 155-157, 484, 485, 490, 491, 537, 538, 556
In-office bleaching 303
In-out (defined) 33
INR (see international normalized ratio) 722
Intaglio 491, 540, 549, 555, 641, 653, 667, 668, 684, 685, 688-690, 696, 699, 701-703, 706-714
Intensity – color (defined) 57
Inter-arch descriptors 34
Interarch relationships 592
Intercondylar distance 587, 588
Intercuspal position (also see maximum intercuspatation) 107
Interdental spacing 259
Interfacial tensile bond strength 355
Interference (defined) 117
Interference 88, 110, 116, 117, 123, 504, 581, 582, 589, 596-600, 606, 610, 612, 686
Intermediary band 98, 99
Internal (defined) 22
Internal relief 626
International normalized ratio 228
International Organization for Standardization 147, 424
Intra-arch descriptors 32
Intracoronal retainer 391
Intracrevicular 409
Intrasulcular – cord 709
Intrasulcular – incision 230, 246
Intrasulcular – margin 409
Intrinsic stain 299
Intrusion 267, 463
Investment 627, 628, 636-639, 644, 644-648, 666, 671, 672
Investment – gypsum bonded 636
Investment – phosphate bonded 636
IOTN 9, 45
Iridescence (defined) 62
Irreversible hydrocolloid 562, 567
Irreversible hydrocolloid – setting reaction 562
Irritation – biocompatibility 127, 128, 146, 152, 159, 302, 410
ISO 14801 473
ISO 724:1993 453
ISO 6873 619
ISO 6360 424
Isomalt 297, 298
Isotopic 143
ISS (see immediate side shift)

J

Jaw closers/deflectors/depressors/ openers 74
Jørgensen experiment 398
Junctional epithelium (defined) 27
Junctional epithelium 409, 410
Junctional epithelium – implants 354

K

Kaplan-Meier estimate 498
Keying features 447
Keying 449
Keyway 449
Kinematic facebow 591
Koch's postulates 209

L

L*ab* color system (defined) 60
L*ab* color system 60-62, 493, 661-664, 676, 677
Labial frenum 21
Laboratory – communicating with 672
Laboratory – dental 17
Laboratory procedures 615-681
Lactose 297, 298
Lamellar bone 352
Lamine techniques – occlusal records 594
Mock-up 503
Model fabrication – technical steps 621
Models – beams 140
Models – computer/numerical 142, 398
Models – finite element 142, 143
Models – laboratory investigations 140
Models, modeling 140, 209
Modes I, II, III – fracture 139
Modulus of elasticity 54, 72, 129, 130, 136, 141, 143, 319, 320, 496, 696
Modulus of rupture 136-138
Molecular biology 212
Moment of inertia 141
Moment – mechanics 90, 141, 267, 452
Monomer – amphiphilic (defined) 485
Monomer – hydrophilic (defined) 482
Monomer – hydrophilic 481-489, 523-526, 694, 695, 702
Monson – curve 119, 120
MOR (see modulus of rupture)
Morphology and dynamics – ideal arches 179
Morphotype 31, 83, 88
Morse-taper 448
Mottled teeth 294
Mouthgaurd bleach (see home bleaching)
MTT test – biocompatibility 145
Mucosa vs. gingiva 354
Mucosa-fibers – implants 355
Mucosa-marginal – implants 355
Munsell – color system 56
Muscle – chewing 70, 74, 77, 79, 83, 113, 455
Muscle – force 69, 70, 74, 75, 83, 84, 113
Muscle – morphology/anatomy 69, 70, 77, 157
Muscle – pain 87, 153, 583
Muscle – physiology 74, 76, 78, 80, 88, 100-102, 112, 119, 144, 160, 350, 583, 598
Muscle contraction – maximum 83
Muscles – pcrioral 40
Musculature – deprogramming 607, 608
Mutagenesis test – biocompatibility 145
Mutually protected occlusion 112, 121
Mx – cranial landmark (defined) 39
Mycobacterium tuberculosis 621
Mylar 687
Mylohyoid muscle 74
Myocentric (defined) 110

N
N (nasion) (defined) 36
Need (defined) 9
Need - normative (defined) 10
Need – perceived (defined) 11
Negative bone architecture (defined) 224, 225
Negative error 581, 596
Neutral axis 133
Nightgaurd bleach (see home bleaching)
NITINOL 274
Noble – metal 329, 477, 630-636, 661, 673
Nomogram 399
Non-esthetically sensitive zone 40, 226
Non-noble – metal 628
Non-rigid connector 396, 419
Non-specific plaque hypothesis 210
Non-specific plaque hypothesis 725
Non-specific tests – biocompatibility 146
Non-steroidal anti-inflammatory drug 229, 243
Non-working condyle 588
Non-working side 105, 106
Normal prototype (defined) 44
Normocclusion (also see class I – Angle) 34
NPG-GMA 480, 524
NSAID (see non-steroidal anti-Inflammatory drug)
Numerical model 142, 398

O
Occlusal contact – intensity 113
Occlusal contact – pattern 98, 111-116, 121, 123, 185, 581-583, 600, 610, 611
Occlusal contact 642
Occlusal contacts 610, 611, 612, 613
Occlusal plane (defined) 35, 38
Occlusal plane 39
Occlusal record 592
Occlusal records – Elastomeric materials 594
Occlusal records – Index copings 594, 596
Occlusal records – Laminate techniques 594
Occlusal records – Positioning accuracy 593
Occlusal stability 114
Occlusal stop 642
Occlusal table 35, 261
Occlusal vertical dimension (OVD) 39, 118, 119, 200, 201
Oclusion - dynamic 17
Oclusion - static 17
OHIP 9
OHQoL 9
Oligomer 155, 536, 537
One bottle systems 487
Onlay graft/grafting 238, 239, 367
Opalessness 62
Opaque layer – ceramics 662
Opaqueness 61
Open tray – implant impression 458, 466, 467
Opening muscles 74
Operative dentistry 289-338
Optimization process 279, 422, 489, 501, 511, 529
Or (orbitale) (defined) 36, 37, 38
Oral image (defined) 172
Orbiting condyle 107
Organic occlusion 112, 121
Oropharynx - posterior wall 21
Orthodontic movement – physiology 261
Orthodontics 257-288
Ossoconduction 351
Ossoinduction 351
Osseointegration 12, 73, 151, 160, 264, 269, 340-354, 382, 450
Osseous contour 222
Osseous- (see bone-)
Osteocytes 264
Osteoectomy/ostectomy (defined) 223
Osteoplasty (defined) 223
Overbite 34
Overcontour 412
Overhang 408
Overjet 34, 35, 493
Oxygen – partial pressure 216
Packing – tissue deflection 569
Pain threshold - teeth 81
Palatal rugae 21
Palatine artery 247
Palatine foramen 247
Palatine fovea 21
Palatine raphe 21
Palatine tonsil 21
Palatoglossal arch 21
Palatopharyngeal arch 21
Pankey-Mann 119
Paracelsus’ principle 149, 150
Paracetamol 229, 275
Paraffin 593, 634
Parafraction (defined) 87
Parafraction 87, 92447
Parasalvular – incision 230
Partial coverage 392, 393, 394
Partial edentulism - demographics 5
Partial thickness flap 231
Passive fit 454
Passive/forced recording – occlusal records 597
Path of draw 183, 421, 422, 428-430, 433, 436, 446, 511, 530, 532, 542, 555, 703
Path of insertion 421
Path of withdrawal 421
Pathogens – periodontitis 209
Patient related – problem list 182
Patrix 449
Pattern – muscle /force 84, 98, 357, 358, 455
Pattern – occlusal contacts 98, 111-116, 121, 123, 185, 581-583, 600, 610, 611
Index

Separable model 626
Sequestration 152
Set goals – project management 170
Setting characteristics – impressions 562
Setting expansion 637
Setting time – cements 701
Setting time – impressions 563
Sextant (defined) 23
Shade selection – instrumental 676
Shade selection – visual 676
Shape memory effect 274
Shim stock 687
Shortened dental arch 73, 167
Shoulder – ceramics 660, 662, 644, 668, 669, 671
Shoulder – preparation 315, 327, 330, 406-408, 420, 498, 530, 576, 577, 627, 674
Shrinkage – ceramics 654, 655, 660, 668-670
Shrinkage – metals 637-639
Shrinkage – resins 157, 469, 481, 489, 490, 536-538, 559, 565, 567, 605, 693, 696
Silane/silanization 709
Silica granuloma 160
Silicate cement 697
Silicoating 710
Silicoating – pyrochemical 710
Silicoating – tribochemical 710
Silicone – impressions 559
Simpson’s point – hinge axis 592
Single phase material 537
Sintering 392
Sintering – ceramic 392, 491, 492, 652-656, 659-671
Sinus floor elevation 366
Sinus lift 366
Sixth generation – dentin bonding 487
SLA 349
Slide in centric 117
Slip fit – Implants 448
Smear layer 481, 482, 483, 484
Smile – construction 45
SN diagram 134
SNA, SNB angle (defined) 37, 38
Snap set 563
Social distance 39, 45
Socioeconomic background 178
Sodium hypochlorite 573
Soft palate 21
Soft tissue augmentation 237
Soft tissue augmentation – techniques 238
Sol state 561
Solidification 639
Solubility curves – apatite 296, 729
Sorbitol 297, 298
Sounding 219
Space closure 280, 281
Spacing – interdental 259
Species – chemical 144-146, 149, 155-157, 345, 349, 489, 656, 657
Specific plaque hypothesis 210, 725
Spectral locus (defined) 58
Spectral reflectance curve 61
Spectrophotometer 63, 676, 677
Spee – curve 35, 97, 119, 120, 122, 599
Spherical theory of occlusion – Monson 120, 122
Spline 449
Splinting 402, 403
Springs – orthodontics 273
Sprue/spruing 636, 638
Stability – occlusal 114
Stabilization – adhesive mode 699
Stabilization – chocking mode 699
Stabilization – mixed mode 699
Stabilization – mobile teeth 534
Stabilize mobile teeth – indications for FDP 168
Stacked system – implants 445
Stain/stains/staining 61, 182, 206, 244, 294, 299-309, 497, 502, 515, 529, 534, 535, 539, 541, 555, 654, 656, 671, 696, 721, 728, 733, 734
Stainless steel 273
Standard deviation 398
Stanley experiment 363
Statherins 296
Stock tray 565
Stiociometric relation 640
Stomatognathic physiology 97
Straight wire technique 271, 272
Strength – compressive 130, 619, 691, 700
Strength – pull-out 317, 318, 395
Strength – shear 479, 489
Strength – tensile 129, 130, 136, 137, 310, 344, 349, 355, 479, 488, 499, 512, 513, 700, 701, 711, 712
Strength – yield 129, 130, 134, 344, 631
Streptococcus mutans 290, 291, 292
Stress fracture 134
Stress – field/vector 72, 83, 129, 358, 360, 395, 396, 419, 448, 450-452, 480, 565
Stress – tensile 123, 132, 133, 136, 450, 451, 698
Stress – yield 143
Stress-breaker 396, 419
Stress-strain 129, 130, 132, 496
Structural application (defined) 127
Structural weakness of teeth – indications 168
Stylohyoid muscle 74
Subepithelial connective tissue graft 238, 239
Subgingival – debridement 184, 216, 218, 722, 726, 727, 733, 734, 736
Subgingival – micro-organisms 212, 214-218, 722, 724, 726, 731-734
Submerged implant system 346, 442
Submicron layer 482
Subperiosteal implant 342
Subtractive/additive fabrication 652
Sucrose 297, 298
Sulcus-implant 354
Sunday bite 107
Superior (defined) 22
Superior joint cavity 100
Superior wall – TMJ 104
Supportive phase 169, 201
Supportive therapy 721, 723
Supracrestal soft tissue compartments 224, 225
Supragingival 409
Supragingival plaque 722
Surface detail – occlusal records 595
Surface detail reproduction 560
Surface digitizer 649
Surface free energy 479
Surface roughening – cementation 710
Surface scanning – contacting method 650
Surface scanning – non-contacting method 651
Surgery – preparatory measures 228
Surgical crown exposure/lengthening (see crown lengthening)
Suture 235, 236, 241, 249
Svedberg unit 479
Symmetry – relative to midline 47, 49, 51, 115, 531, 532, 685-687
Synovial joint (defined) 98
Synovial membrane 101
Systemic tests – biocompatibility 146

T
Tack curing 715
Tactile sensitivity – teeth 81
Tactile threshold – implants 82, 83
Tactile threshold – teeth 81, 82, 83
Taper 317, 325, 397-400, 420, 424, 428, 429, 433, 436, 448, 449
TBB 490, 491, 527
TC50 – metal ions 150, 151
TC50 – resin composites 156
Teeth – defective 8
Teeth – pain threshold 81
Teeth – rotated 260, 261
Teeth – tactile sensitivity 81
TEGDMA 156, 157, 158, 487, 490, 522, 537
Temperamental theory (defined) 49
Temporalsis muscle 74, 75
Temporary cementation 701
Temporary restoration 529
Temporodiscal cavity 100
Temporomandibular joint 98
Tensile bond strength – dentin 488
Tensile strength 129, 130, 136, 137, 310, 344, 349, 355, 512, 513, 699, 700
Tensile tests – caution 479, 480
Terminal hinge position 109
Teteruck and Lundeen’s point – hinge axis 592
Tetracycline 217, 218
Texturometer – General Foods 71
Therapeutic contact pattern 113
Therapeutic contact scheme/occlusion 582
Therapeutic occlusion 111
Thermal center 638, 639
Thermal expansion 628, 632-634, 636-639, 648, 659, 661, 696
Thermal inertia 645, 646
Thickness – enamel 499
Thielemann’s formula 119
Thin/thick alveolar housing 224, 225
Third generation – dentin bonding 481
Third order bend/movement 267, 270-272
Thixotropy – impressions 564
Threaded fastener 452
Three dimensional scanner 649
Thrombogenic – biocompatibility 145
Ti6Al4V 344
Tip/tipping 33, 267, 271
Tissue deflection 568
Tissue deflection – rotary gingival technique 568
Tissue extension 443
Tissue implantation–metals biocompatibility 151
Tissue implantation–resins biocompatibility 157
Tissue maturation 226, 236
Titanium – biocompatibility 345
Titanium – α-β transition 344
Titanium alloys – orthodontics 274
Titanium-plasma spray 340, 347
TMJ: temporomandibular joint 583, 584, 589
TMJ analogs 587
Tolerance 449
Tooth – arrangement 48, 97
Tooth – deconstruction 131
Tooth – microstructure 128
Tooth – migration 90
Tooth – mobility 85
Tooth – supporting structure 128
Tooth display 39
Tooth loss – causes 7
Tooth loss – consequences 8
Tooth mobility – primary 85
Tooth mobility – secondary 85
Tooth mobility – measurement 86
Tooth unit 13
Tooth-anchored multunit FDP – treatment planning 191
Tooth control device 472
Tooth 33, 267, 271, 452
Torx 472
Total occlusal convergence 397, 420
Touch probe scanner 651
Toughness 71, 136, 564
Toxicity test – biocompatibility 145
Toxicity 144-152, 156-160, 218, 302, 344, 345, 539
Trace elements – essential 71, 136, 564
Tragus – extracranial landmark (defined) 149
Tragus – extracranial landmark 149
Transfer coping – impression 457, 465
Transferability (defined) 147
Transgingival implant system 442
Translation (defined) – orthodontics 267
Translucency (defined) 61
Translucency parameter 62
Transmission – bacteria 211
Transmittance – color 63
Transmucosal collar 443, 444, 464
Transmucosal implant system 436
Transluminal light bulb 54, 55
Two posterior occlusal reduction 422
Tyndall effect (defined) 62

U
UCLA abutment 464
UDMA 154, 156, 157, 487, 490, 522, 537
Ultimate tensile strength 129, 130, 136, 137
Ultrasoundic – bath 712
Ultradasonic – insert 415
Ultrasoundic – instruments 216, 721, 722, 725, 733
Undercontour 413
Undercut 310, 327, 329, 397, 420, 433, 436, 500, 532, 542, 551, 553-555, 559, 560, 567, 573, 575, 650, 667
Undermining resorption 263
Unit (see Tooth unit)
Universal testing machine 129
Unwanted/adverse movement 275
Usage tests – biocompatibility 146
UTS: ultimate tensile strength 130, 136-138
UTS – fibers 512
UTS – metals 130, 136-138
UTS – resins 538
Uvula 21

V
Vacuum mixing 645
Value – color 57
VDO: vertical dimension of occlusion 649
Vector 69, 84, 70, 75, 83, 84, 89, 91, 92, 320, 395, 473
Ventral (defined) 22
Verifiable keying – occlusal records 593
Index

Vertical dimension of occlusion 39, 117, 118, 180, 181, 200, 201, 204, 532, 585, 610
Vinyl-polysiloxane 562
Vipeholm study 290
Viscoelastic response 131, 143
Visual interpolation 434
Visual shade selection 675
Volume expansion 618

W
Walking bleach 302, 303, 307, 308
Wash-out 534
Wax 279, 457-460, 466-468, 559, 573, 577, 590, 592-595, 610, 622, 623, 625, 712, 713, 733
Wax – casting 312, 329, 332, 443, 460, 461, 468, 469, 627, 634, 636, 637, 644, 648-650, 689
Wax – classification 634
Wax – composition 593, 632, 634
Wax – handling 628, 634, 641
Wax – physical properties 635
Wax – try-in 689
Wax up/waxing 21, 204-206, 329, 331, 364, 434, 435, 502-504, 514, 544, 545, 551, 555, 585, 641-644, 673, 687
Wedelstaedt 235
Wettability 564
Wetting agent 623, 644
Whitening strips 303
WHO – criterion for oral health 10
Wilson – curve 119, 120
Window – frame 47
Wireframe model 650
Wires – orthodontics 273
Wöhler diagram 134
Wolff’s law 357, 358
Work authorization 673
Working model 592, 616
Working time – impressions 563
Wound healing 236

X
Xenogenic graft 377
Xylitol 297, 298

Y
Yield strength – stress-strain diagram 129, 130
Young Thomas 54
Young’s modulus 130, 141

Z
Zinc phosphate cement 691
Zinc polycarboxylate cement 692
Zinc-oxide-eugenol cement 695
Zinc-phosphate cement – handling 705
Zirconia 137, 139, 159, 160, 343, 632, 634, 649, 654, 657-659, 661, 687, 695, 696, 709, 710, 712
Woven bone 352
Written treatment plan 206