Endodontic Microsurgery
Foreword

I was honored to be asked to write the foreword to Dr Enrique Merino’s textbook, Endodontic Microsurgery. To my knowledge, it is the first comprehensive book on the subject, and this is certainly the right moment for publication. In short, this book gives the reader the current definitions of the surgical procedures that must be carried out to address endodontic problems and failures.

Although surgery has been used for centuries to solve endodontic problems and maintain teeth in the dental arch, the biological concepts, the technical procedures and the armamentarium have drastically evolved in the last 20 years. For example, apical surgery has long been performed by oral surgeons, with sometimes poor outcomes owing to lack of knowledge of the endodontic biological principles. Today, apical surgery must be regarded as an integral part of the endodontic field and a predictable treatment modality, owing to the introduction of new technological advancements coupled with refinements in soft and hard tissue management. Magnification through the use of the operating microscope, dedicated ultrasonic tips, new biomaterials for root-end filling, and guided bone regeneration have changed the outcome of surgical endodontics, which is now expected to be similar to orthograde treatment.

I have known Dr Merino for many years and I can bear witness to his passion for endodontics and periodontics. He was trained in both fields in renowned graduate programs and has lectured extensively
in his country and internationally. He is a sophisticated clinician with sound academic knowledge, as attests the exhaustive and up-to-date references available at the end of each chapter. On the other hand, the format of the book is of a high standard, well organized and easy for any clinician to read, whether a general practitioner or a specialist. The text is concise, with the addition of step-by-step procedures, clinical tips and the dedicated instrumentation used. The procedures are well described, with clear graphics and high-quality clinical illustrations. Finally, the content is comprehensive, involving all areas of microsurgery, including chapters on endo-perio relationships, treatment of bone defects and implantology.

Dr Merino must be congratulated for the enormous time spent in the preparation and writing of Endodontic Microsurgery. His book should find its place in the library of any dentist or specialist interested in microendodontics and surgery.

Pierre Machtou, DDS, MS, PhD, FICD
Université Paris Diderot – Paris 7, France

Dedication

To my parents Antonio and Carmen, to whom I owe everything.
To Dr Herbert Schilder (Boston), who introduced me to modern endodontics more than 20 years ago.
To my “endodontic father”, Dr Pierre Machtou (Paris), for infusing me with his love of endodontics and his great devotion to teaching.
To Dr Singcuk Kim (Philadelphia), who showed me the way to scientific endodontic microsurgery.
To Dr Guillermo Calleja and Dr Gilberto del Rosario (Madrid) for the SEM images of sutures.
To Dr Julio Galvez (Philadelphia) for his help in reviewing the final manuscript.
To my assistants Olga, Esperanza, MariAngeles and Begoña, for their help and care for me and my patients. To Jose Avelino and his lab team. To Gonzalo for his infographic work.
To Johannes Wolters and Thomas Pricker (Quintessence Verlag) for their confidence and patience with me.
Contents

Introduction 1

1 Magnifying the Surgical Field with an Operating Microscope 5
 Introduction 5
 The Microscope and the Loupe Compared 6
 The Loupe – The Microscope
 The Microscope’s Main Features 13
 Microscope Parts 14
 Eyepieces – Binoculars – Magnification Changer – Focusing
 Knob – Objective Lens – Beam Splitter – External Monitor or
 Co-observation Tube – Picture and Video Adapters – Digital
 Picture Camera – Video Camera
 Advantages and Disadvantages of Using a Microscope 23
 Advantages – Disadvantages
 Ergonomic surgical working positions 26
 Working Positions 28
 Golden Rules when Buying a Microscope 30
 Golden Rules to Get Started 31
2 Presurgical Considerations

Introduction
Indications and Contraindications
Indications – Contraindications
Patient Considerations
Patient Expectations – Patient Collaboration –
Medical History – Expense – Informed Consent
Surgeon Skills

3 Endodontic Microsurgery Step by Step 49

Introduction
Anesthesia
Rationale – Technique
Flap Design
Rationale – Rules of Flap Design – Flap Types
Incisions
Elevation
Retraction
The Osteotomy Window
Clinical Situation 1: Intact Cortical Bone Plate – Clinical
Situation 2: Perforation of the Cortical Bone Plate without
Periosteum – Clinical Situation 3: Perforation of the Cortical
Bone Plate with Periosteum – Clinical Case
Curettage
Technique
Hemostasis
History – Inducing Hemostasis – Topical Hemostatic Agents –
Recommendations
Apicoectomy
Comment – Technique – Methylene Blue – Isthmus
Ultrasonic Retrocavity Preparation
Ultrasonic Microtip Types – Microtip Materials – Tip Angulation
– Irrigation – Problems – Ultrasonic Files – Micromirrors
Drying
Obturation
Retrofilling Cement: Types, Selection and Techniques:
Amalgam · Zinc Oxide-eugenol (ZOE) Cements ·
Intermediate Restorative Material (IRM) · SuperEBA · Glass Ionomer Cement (GIC) · Gutta-percha · MTA Cement · Composite · Compomers – Summary

Suturing

4 Postsurgical Considerations 133

Postsurgical Instructions 133
Analgesics 134

Non-narcotic Analgesics – Non-steroidal Anti-inflammatories – Narcotic Analgesics – Suggestions
Antibiotics 138
Disinfectant Solutions 140

5 Endodontics and Periodontics 143

Introduction 143
Histological Considerations 144
Endo–Perio Lesions Classification 150

Endodontic disease – Endodontic Disease with Secondary Periodontal Involvement – Periodontal Disease – Periodontal Disease with Posterior Endodontic Involvement – The True Endo–Perio Lesion
False Endodontic Lesion with Periodontal Involvement 162

Conclusions 169
6 Treatment of Bone Defects in Apical Endodontic Microsurgery

Introduction 175
Bone Defect Classification 176
Large Bone Defects – Through-and-Through Defects – Apicomarginal Bone Defects
Clinical and Radiological Diagnostic Methods 179
Traditional methods – Cone-beam Computed Tomography:
Features of CBCT · Field of Vision · Collimation · Photograms · Gray Scale · Voxel Size · Sensor Type · Effective Dose
Comparison · Potential Applications of CBCT in Endodontics
Guided Bone Regeneration 188
Introduction – Barrier Membrane Characteristics:
Biocompatibility – Cell Occlusiveness – Space-making Capability – Tissue Integration – Clinical Manageability – Membrane Types:
Introduction · Non-absorbable Membranes · Absorbable Membranes – Membrane Exposition and Contamination
Bone Graft Materials and their Uses 196
Autologous (Transplant within the same Patient) – Allografts (Transplant within the Same Species) – Xenografts (Cross-species Transplantation) – Alloplasts (Implantation of Synthetic Material)
Modification of the Flap Design 201
Bone Defect Treatments 202
Clinical Cases 202
Clinical Case 1: AMBD (“old-style treatment”) – Clinical Case 2: AMBD (“current style”) – Clinical Case 3: TTBD – Clinical Case 4: AMBD + TTBD

7 Treatment of Bone Defects in Non-endodontic Microsurgery 217

Lateral Canals 217
Presurgical Bone Defect Evaluation – Technique – Clinical Case 1 – Clinical Case 2 – Differential Diagnosis
External Resorption 222
Presurgical Evaluation – Treatment
Perforations

Introduction – Etiological Classification – Diagnosis of Perforation – Strategies for Iatrogenic Perforations: Waiting Time · Materials · Size and Shape · Location · Access · Prognosis

Non-surgical Treatment of Perforations

Introduction – Processes – Clinical Case 3 – Clinical Case 4

Surgical Treatment of Perforations

Indications – Contraindications – Clinical Case 5 – Clinical Case 6 – Clinical Case 7 – Clinical Case 8

Root Resective Procedures

Introduction – Indications – Contraindications – Root Amputation – Hemisectioning – Assessment and Planning – Clinical Procedures: Root Canal Treatment · Resectioning Procedure · Extraction · Bone Graft · Final Restoration · Prognosis

Intentional Replantation

8 Implantology

Introduction 269

Clinical Examination 270

Radiographic Examination 271

General Issues – Types of Examination

Implant Placement 273

Planning 278

Implant Surgery 278

Rationale of the Immediate Implant 282

Indications – Advantages – Contraindications

Graft Materials 285

Hard Tissue Grafts – Soft Tissue Grafts

Factors Associated with Successful Immediate Implant Therapy 287

Bone Profile – Experience of the Clinician – Dehiscences – Infrabony Defects – Combined Defects

Summary and Guide

Maintenance Program 306
Success Rate of Surgical Endodontics 319

How Can Success be Defined? 319
- Histological Features – Radiological Features – Clinical Success

The Origins of Surgical Failure 322
- Presurgical Factors – Surgical Factors – Postsurgical Factors

Clinical case: Wrong Diagnosis 329

Comments on the Literature 330
- Success/Failure Rates – Method/Technique/Technology Used – Sample Size – Surgeon Experience and Skills – Study Design
Cases with “C-shaped” canal anatomy should be prepared totally (Fig. 3-116).

Face burns
Care must be exercised at all times to ensure that the shaft of a hot ultrasonic tip does not come into contact with the lip, cheek, or facial tissues.62
Fig. 3-117 (a) Final radiograph with cement filling the canal all the way down to the lateral canal and post. (b) Maxillary left central incisor apicoectomy case with periapical and lateroradicular lesions and a perforation of the buccal bone plate due to a lateral canal. Ultrasonic file instrumentation of the lateral canal. (c) Lateral canal after ultrasonic file instrumentation. (d) Ultrasonic file instrumentation of the main canal. Note how a milky secretion is exiting from the lateral canal. (e) The most difficult part of the canal to clean is the buccal wall, so a 70–80-degree buccal angulation file is advised. (f) Obturation of the canal by injection of superEBA cement with with a Centrix jeringe needle. (g) The main and lateral canals sealed.

Ultrasonic Files

Retrocavity depth should be 3 mm when the advisable previous nonsurgical retreatment has been done. If this cannot be done, and the cleanliness status of the root canal system is unknown, it will be necessary to make a deeper retrocavity by means of an ultrasonic file: sometimes all the canal length up to the irremovable radicular obstacle, post etc., or to the lateral canal that produces the bone lesion (Fig. 3-117).

The file size should be chosen to be neither too thin (vibration cavitation will not enlarge the canal) nor too thick (no vibration occurs). The file length should be chosen to prepare the canal all the way to the coronal obstacle, so most times a larger osteotomy window will be required (see Fig. 3-52).
Fig. 6-37 (a) This maxillary right lateral incisor presented with an apical fistula of 3 years evolution. (b) External dentinal resorption can be clearly seen on the radiograph. (c) A total buccal dehiscence is seen after raising the flap. (d) External dentinal resorption of the apical third. (e) to (g) Apicoectomy, ultrasound microcavity preparation, and superEBA obturation. (h) DFDBA chips were used to cover the root dehiscence all the way down. (i) A Guidor resorbable membrane covering the bone graft, horizontally 2–3 mm beyond bone defect limits and vertically to the height of the surrounding bone crest and 2–3 mm below the gingival margin of the flap. (j) Radiographic appearance after surgery. (k) Probing depth at the dehiscence site after 6 months of healing.
Fig. 6-38 (a) A mandibular right first molar with a cervical buccal fistula. (b) A total buccal distal root dehiscence is shown after flap raising. (c) and (d) A 5 mm diameter trephine is used to make osteotomy windows – it is fast and ergonomic (bone recovered from the trephine can be used as bone graft). (e) Bone taken in the trephine was particulated to serve to cover the root dehiscence and as a space maker underneath the non-resorbable membrane. The periapical lesion received no attention because it is an inhousing defect. (f) A GoreTex GT-4 is cervically trimmed to adapt to the bone crest and fixed mesially and distally by titanium tags (Frios). (g) Radiograph taken at the end of surgery. (h) Radiograph taken after 6 months of healing, where increased bone density of the area is usual. (i) No dehiscence is seen in the area after removal of titanium tags and membrane. (j) A centripetal vascular network was discovered from outside into the bone defect area. The soft, white, delicate tissue underneath the membrane and covering the regenerated area must not be removed at all.