Treatment of TMDs: Bridging the Gap Between Advances in Research and Clinical Patient Management

Edited by

Charles S. Greene, DDS
Clinical Professor
Department of Orthodontics
College of Dentistry
University of Illinois
Chicago, Illinois

Daniel M. Laskin, DDS, MS
Professor and Chairman Emeritus
Department of Oral and Maxillofacial Surgery
Schools of Dentistry and Medicine
Virginia Commonwealth University
Richmond, Virginia

Quintessence Publishing Co, Inc
This book is dedicated to the memory of Dr Laszlo Schwartz, who founded the first academic temporomandibular joint (TMJ) center in the United States at Columbia University in 1949. At that time, the generally accepted viewpoint was that abnormalities in dental and jaw relationships were the major factors in the development of disorders related to the TMJ. Therefore, procedures such as occlusal adjustment or major restorative dentistry were the preferred therapies. All this eventually changed as the result of his pioneering research and his leadership. His textbook, *Disorders of the Temporomandibular Joint*, published in 1959, represented a major paradigm shift from a mechanical to a biopsychosocial approach to their treatment. Dr Schwartz’s work not only had a profound influence on the future direction of research in the field, but it has also led to improved care of patients with temporomandibular disorders.
Section I. Understanding Regional and Widespread Pain Phenomena

1 Sensory Mechanisms of Orofacial Pain  3
   Ronald Dubner, Ke Ren, and Barry J. Sessle

2 Pathophysiology of Masticatory Myofascial Pain  17
   Rafael Benoliel, Peter Svensson, and Eli Eliav

3 Pathophysiology of Intracapsular Inflammation and Degeneration  33
   Rüdiger Emshoff

4 Comorbid Conditions: How They Affect Orofacial Pain  47
   Ana Velly, Petra Schweinhardt, and James Fricton

5 How Sleep and Pain Affect Each Other  57
   Guido Macaluso, Maria C. Carra, and Gilles J. Lavigne

Section II. Assessing Susceptibility to Pain Development and Chronicity

6 Genetic Determinants of Complex Orofacial Pain Conditions  69
   Christian S. Stohler

7 Quantitative Sensory Testing of Pain Responsiveness  79
   Peter Svensson, Eli Eliav, and Rafael Benoliel

8 Predicting Treatment Responsiveness: Somatic and Psychologic Factors  91
   Richard Ohrbach and Thomas List

Section III. Biomechanics of TMJ Function

9 Biomechanics and Mechanobiology of the TMJ  101
   Sandro Palla and Luigi M. Gallo

10 Finite Element Analysis of the TMJ  113
    Jan Harm Koolstra

11 Lubrication of the TMJ  123
    Yehuda Zadik and Dorrit W. Nitzan
Section IV. Diagnostic Technology

12 Imaging of the TMJ and Associated Structures 133
   David C. Hatcher

13 Brain Imaging of Pain Phenomena 141
   Geoffrey E. Gerstner, Eric Ichesclo, and Tobias Schmidt-Wilcke

14 Synovial Fluid Analysis and Biomarkers of TMJ Disease 155
   Regina Landesberg and Sunil Wadhwa

Section V. Therapeutic Advances

15 Developmental and Evolutionary Perspectives on TMJ Tissue Engineering 167
   David A. Reed, Robert P. Scapino, Callum F. Ross, Di Chen, and Thomas G. H. Diekwisch

16 Injectable Compounds to Treat TMJ Pain and Degenerative Joint Disease 177
   Songsong Zhu and Jing Hu

17 Pharmacologic Management of TMD Pain 185
   Stephan A. Schug, Stefan Lauer, and Robert E. Delcanho

Appendix of Abbreviations 195
Index 197
I am very pleased to write a foreword for this textbook. My first reason for this is based on the major shift in the concepts and protocols for managing temporomandibular disorders (TMDs) and orofacial pain that I have seen in my professional career. These changes have occurred as a result of the new knowledge we have gained that has enhanced our understanding of these conditions, and the precise goal of this textbook is to bring this type of information to the clinician. Another reason that I am pleased to write this foreword is because of my admiration for both Dr Greene and Dr Laskin. Very early in the 1970s, these two individuals boldly questioned universally accepted therapies, and their efforts began a professional movement that demanded more evidence to support our TMD treatments. Acquiring such evidence is essential in offering the best care to our patients. This textbook provides the clinician with an understanding of the basic science and clinical research that supports the use of our current therapies while also pointing the way toward future treatment possibilities. These principles are fundamental to good health care.

Many years ago, a link was made by the dental profession between the occlusal relationships of the teeth and orofacial pain. Early on it was observed clinically that in some patients changes in the occlusal condition seemed to be associated with a reduction in pain. Unfortunately, at that time we had very little understanding or appreciation for the scientific method that could be used to better define this association. Instead, we made some assumptions regarding connections between what we knew (occlusion) and what we really did not know well (the pathophysiology of pain). Our early mentors taught by authority and not necessarily by reason or evidence. This seemed to fit nicely with the mechanistic model that we dentists understood and used in managing most of our patients’ common dental problems. However, it eventually became obvious that there were significant inconsistencies in achieving success with our orofacial pain patients. We then began to ask more questions that would help us better understand these patients’ problems.

By the late 1980s, the profession began to appreciate and embrace the concept of basing our treatment decisions on scientific studies and not just assuming that our mentors were correct. This stirred up much controversy, not only because it discredited some mentors but also because it forced us to give up concepts that we had accepted that had no scientific merit. We learned, as we have continued to learn, that it is difficult to change belief models.

By the late 1990s, the scientific method became more embraced by the profession and we began to hear the term evidence-based medicine. Significant research funding became available, especially for the investigation of pain. However, much of this research was in the basic science domain, leaving the clinician with little connection to the findings. Realizing the need to link these research findings to the practice of medicine and dentistry, the concept of “translational science” became a standard goal. Translational science is exactly what this text offers. It presents a state-of-the-art description of the known biology of TMDs and orofacial pain, as well as of developing concepts, in a format that can be translated into the clinical management of patients.

Another important feature that was uncovered by basic science research was that pain is pain. Although there are definitely some unique features of the masticatory structures, we have learned that the mechanism by which nociceptive impulses are initiated, transmitted, and perceived as pain is not unique to the masticatory system but in fact common to all other areas of the body. We have also learned to appreciate that dentistry and medicine blend together in the area of orofacial pain. The mechanistic model first embraced by the dental profession can no longer explain the pain our patients experience, especially as it becomes chronic. In fact, most chronic orofacial pain conditions are very similar to other chronic pain conditions managed in the medical field. Moreover, many of the chronic pain patients have two or more pain conditions simultaneously. The evidence-based research in orofacial pain has moved us away from teeth to the vast field of understanding human pain and suffering.

Although we have advanced greatly in the field of TMDs and orofacial pain, our knowledge is still incomplete. Yet every day clinicians meet patients who ask for help with their pain and suffering. We must take the best scientific evidence available and determine the most appropriate treatment for each patient. This is not always an easy undertaking, yet it is the most critical task that needs to be accomplished for the patient. This is the concept behind “best practice.” This text will help clinicians make many of these very important decisions for their patients. The most essential factor to consider is to always select the most conservative approach and to do no harm. The human being is a remarkably complex organism with a great ability to adapt and recover. The most conservative approach to therapy is often adequate to enhance this recovery.

I commend Drs Greene and Laskin for their efforts in assembling this fine text. I also applaud the contributing authors, many of whom have dedicated their life’s work toward gaining a better understanding of why and how our patients suffer and what can be done to help them. The true value of this book will be measured not only by the number of clinicians who read it but also by how they use this information to reduce the pain and suffering of their patients. This is the ultimate responsibility of the health care provider.

Jeffrey P. Okeson, DMD
Professor and Chair, Department of Oral Health Science
Provost’s Distinguished Service Professor
Director, Orofacial Pain Program
College of Dentistry, University of Kentucky
Lexington, Kentucky
The central theme of this book arises from a single question: What is happening in basic and clinical research today that likely will significantly impact the diagnosis and treatment of temporomandibular disorders (TMDs) in the near future? Clearly, the answer to this question must extend far beyond the traditional pain issues that have been the predominant focus of most recent research. The combination of new research tools with innovative experimental designs has produced a large body of information about musculoskeletal disorders, and much of this can be directly or indirectly applied to the temporomandibular joint (TMJ). However, many dental clinicians are unaware of this type of information because it is presented mainly in medical publications or nonclinical scientific journals. Thus, there is a significant information gap between many of the latest advances in the general field of musculoskeletal disease and their potential applications in the clinical management of patients with various TMDs. This is especially true in regard to the issues of acute versus chronic pain. It is the purpose of this book to help bridge this gap.

The book is divided into five sections, each containing numerous chapters that deal with varying aspects of the anatomy, biochemistry, neurophysiology, and psychology of the common TMDs. Chapters dealing with topics such as the biomechanics of normal and abnormal TMJ function, the complexities of TMJ and masticatory myofascial pain, diagnostic technology and markers of disease, pharmacologic management of TMDs, and tissue engineering of joint components provide a strong foundation for discussing other important issues. Each chapter discusses present knowledge in the particular field and how it may apply to the diagnosis and treatment of TMD patients. In addition, every chapter provides an overview of current new research in the field and its potential for changing future patient care. Included are such clinically relevant topics as the relation of abnormal joint function to joint pathology, the prediction of treatment responsiveness, how sleep disorders affect facial pain, and the role of comorbid conditions in pain response and management. Several chapters also deal with the evolving field of pharmacotherapeutics, including new analgesic drugs, drugs for managing neuropathic pain, and potential drugs for stopping or reversing degenerative joint disease. Because of the numerous technical terms used in this book, an appendix of abbreviations has been added.

We are fortunate to have as contributors to this book a group of international authors who are recognized as leading experts in their fields and who have contributed significantly to our current knowledge through their well-known research and publications. We wish to thank them for their time and effort in accepting the challenge of writing chapters with a focus on future clinical applications of their knowledge. Ultimately, we hope that the information they have offered in this book will provide the reader with a better understanding of the complexities of the various TMDs, which should help to make their management easier and more successful now as well as in the future.
**Eric Ichesco, BS**  
Research Laboratory Specialist  
Department of Biologic and Materials Sciences  
School of Dentistry  
Chronic Pain and Fatigue Research Center  
School of Medicine  
University of Michigan  
Ann Arbor, Michigan

**Jan Harm Koolstra, PhD**  
Associate Professor (Dr)  
Department of Oral Cell Biology and Functional Anatomy  
Academic Centre for Dentistry Amsterdam  
Amsterdam, The Netherlands

**Regina Landesberg, DMD, PhD**  
Associate Professor  
Division of Oral and Maxillofacial Surgery  
School of Dental Medicine  
University of Connecticut  
Farmington, Connecticut

**Daniel M. Laskin, DDS, MS**  
Professor and Chairman Emeritus  
Department of Oral and Maxillofacial Surgery  
Schools of Dentistry and Medicine  
Virginia Commonwealth University  
Richmond, Virginia

**Guido M. Macaluso, MD, DDS, MDS**  
Professor of Clinical Dentistry  
School of Dentistry  
University of Parma  
Parma, Italy

**Dorrit W. Nitzan, DMD**  
Professor  
Department of Oral and Maxillofacial Surgery  
School of Dental Medicine  
Hebrew University Hadassah  
Jerusalem, Israel

**Richard Ohrbach, DDS, PhD**  
Associate Professor  
Department of Oral Diagnostic Sciences  
Buffalo School of Dental Medicine  
University at Buffalo  
Buffalo, New York

**Sandro Palla, Dr med dent**  
Professor Emeritus  
Clinic of Masticatory Disorders, Removable Prosthodontics,  
Geriatric and Special Care Dentistry  
Center of Dental Medicine  
University of Zurich  
Zurich, Switzerland

**David A. Reed, PhD**  
Postdoctoral Fellow  
Department of Oral Biology  
College of Dentistry  
University of Illinois  
Chicago, Illinois

**Ke Ren, MD, PhD**  
Professor  
Department of Neural and Pain Sciences  
University of Maryland Dental School  
Baltimore, Maryland

**Robert P. Scapino, DDS, PhD**  
Professor Emeritus  
Department of Oral Biology  
College of Dentistry  
University of Illinois  
Chicago, Illinois
Tobias Schmidt-Wilcke, MD, MA
Associate Professor
Department of Neurology
University of Tübingen
Tübingen, Germany

Stephan A. Schug, MD
Professor and Chair
Pharmacology, Pharmacy and
Anaesthesiology Unit
School of Medicine and Pharmacology
University of Western Australia
Director of Pain Medicine
Royal Perth Hospital
Perth, Australia

Petra Schweinhardt, MD, PhD
Assistant Professor
Faculty of Dentistry
McGill University
Montreal, Quebec, Canada

Peter Svensson, DDS, PhD, Dr Odont
Professor
Section of Clinical Oral Physiology
Department of Dentistry
Aarhus University
Aarhus, Denmark

Ana Velly, DDS, MS, PhD
Assistant Professor
Faculty of Dentistry
Centre for Clinical Epidemiology and Community Studies
Jewish General Hospital
McGill University
Montreal, Quebec, Canada

Sunil Wadhwa, DDS, PhD
Associate Professor
Director, Division of Orthodontics
College of Dental Medicine
Columbia University
New York, New York

Yehuda Zadik, DMD, MHA
Chief Dental Officer
Israeli Air Force Surgeon General Headquarters
Israel Defense Forces, Tel Hashomer
Department of Oral Medicine
Oral and Maxillofacial Center, Medical Corps
School of Dental Medicine
Hebrew University Hadassah
Jerusalem, Israel

Songsong Zhu, DDS, PhD
Associate Professor and Vice-Chair
Center of Orthognathic and TMJ Surgery
Department of Oral and Maxillofacial Surgery
West China School of Stomatology
Sichuan University
Chengdu, Sichuan, China

Barry J. Sessle, MDS, PhD, DSc(hc), FRSC, FCAHS
Professor and Canada Research Chair
Faculty of Dentistry
University of Toronto
Toronto, Ontario, Canada

Christian S. Stohler, DDS, Dr Med Dent
Professor and Dean
School of Dentistry
University of Maryland
Baltimore, Maryland
Adjunct Professor
School of Dentistry
University of Michigan
Ann Arbor, Michigan
The five chapters in this section are devoted to topics that expand the understanding of orofacial and temporomandibular disorder (TMD) pain phenomenology. The authors have summarized the current research in their respective areas, and they offer projections for future applications of that research to the clinical situation. Advances in these areas are having a profound impact on both researchers and clinicians, and already many of those advances are being applied to the management of TMD patients.

In the Dubner, Ren, and Sessle chapter, the newest concepts of pain neurophysiology are well summarized in just one of their sentences: “An emerging concept is that the immune cells, glia, and neurons form an integrated network in which activation of an immune response modulates excitability of pain pathways.” This is one of many fresh insights that their chapter provides regarding pain mechanisms in general and specifically musculoskeletal pain.

Benoliel, Svensson, and Eliav have reviewed the extensive literature on muscle pain, with special emphasis on masticatory myofascial pain. This review shows that many factors may be involved in the etiology and pathophysiology of such pain, including host susceptibility, genetically influenced physical traits, psychologic issues, and environmental parameters such as ethnicity, culture, and stress. Thus, this type of pain appears to be more complex than joint pain, which leads them to conclude that in the future “emerging pharmacotherapeutic targets [will] appear at various levels, including receptors, regulatory proteins, and downstream enzymes.”

Emshoff brings his wide experience in the study of temporomandibular joint arthritis to his extensive review of the literature on that topic. Many of the etiopathologic features of osteoarthritis in general have been elucidated in recent years, and this has shown that detrimental changes in bone, cartilage, and synovium appear to be interconnected in the pathogenesis of this disease. These findings have led him to conclude that future therapeutic areas on which to focus should include osteochondral angiogenesis, mitochondrial dysfunction, and chondroprotection through lubrication.

The topic of comorbidity has only recently become well recognized and widely studied in the pain field. The various conditions that are found to coexist in many TMD patients (especially chronic TMD patients) not only complicate the diagnosis of their facial pain complaints but also clearly affect the management of these problems. As Velley, Schweinhardt, and Fricton point out, clinicians need to identify comorbid conditions in TMD patients early so as to provide proper therapy to manage their TMD pain. This may require collaboration with other health care providers as part of a comprehensive rehabilitation treatment program. Their chapter provides the latest information on this important topic, along with suggestions for managing such patients clinically.

Macaluso, Carra, and Lavigne have provided an overview of how the topics of sleep and pain have converged in recent years. Sleep studies of pain and non-pain patients have demonstrated important differences between them. This has led to the conclusion that sleep deprivation and fragmentation have an essential role in the way pain is perceived and exacerbated. Sleep problems can exacerbate pain, and intense pain or variable pain intensity can lead to poor sleep. All concerned clinicians must be prepared to deal with this reality.
Peripheral Mechanisms

The TMJ and masticatory muscles are innervated by the primary afferent (sensory) nerve fibers of the trigeminal nerve. These fibers terminate as sense organs (receptors) that respond to peripheral stimulation of the tissues. The large-diameter, fast-conducting primary afferent nerve fibers (namely, the A-alpha [Aα] and A-beta [Aβ] afferents) end in the tissues, typically with connective tissue or epithelial cell specializations encapsulating their endings. These receptors respond to low-threshold (non-noxious) mechanical stimuli or movements. In primate jaw-closing and lingual muscles, some of these large-diameter afferent endings are associated with muscle spindles and Golgi tendon organs that respond, respectively, to muscle stretch and contractile tension; other orofacial muscles have few, if any, of these specialized endings. Some of the small-diameter, slow-conducting primary afferent fibers (A-delta [Aδ]; C) instead terminate principally as free nerve endings, some of which can respond to non-noxious thermal stimuli (ie, warm or cold thermoreceptors). However, most free nerve endings are activated by noxious stimuli and are therefore termed nociceptors.

Activation of the nociceptive endings in the TMJ and masticatory muscles can ultimately lead to the perceptual, reflex, and other behavioral responses characterizing musculoskeletal pain. In contrast, the various low-threshold receptors in these tissues and their afferent inputs to the central nervous system (CNS) play a role in responses evoked by stimuli related to non-noxious joint position, movement, and muscle stretch or tension. It has been known for several decades that the TMJ is supplied by afferents principally in the auriculotemporal branch of the mandibular nerve and that in most mammalian species the richest innervation is in the posterolateral aspect of the TMJ capsule. However, there is conflicting data on whether the articular surfaces and disc of the TMJ are innervated. The innervating fibers may not all be sensory (ie, afferents) but may include efferents of the sympathetic nervous system. Free nerve endings are abundant in the TMJ and also in the masticatory muscle tissues, but more specialized receptors are sparse except for those muscles with muscle spindles and Golgi tendon organs.

About 40 years ago, the first electrophysiologic investigations were made of the response properties of TMJ and masticatory muscle afferents. They documented that low-threshold non-nociceptive afferents have either slowly adapting or rapidly adapting responses to jaw movement or change in condylar position, and these responses were implicated in the sense of jaw movement and jaw position sense (kinesthesia). It became apparent, however, that other primary afferent...
The early pathophysiologic theories offered “one cause, one disease” hypotheses involving such things as muscle hyperactivity, altered occlusion, or stress. However, these theories were largely based on cross-sectional studies that are not adequate for establishing causality or possible risk factors. Accumulated data have now indicated a more complex etiology, and the most current concepts are the multifactorial\textsuperscript{14,15} and biopsychosocial\textsuperscript{16} theories. Both of these theories propose a complex interaction between environmental, emotional, behavioral, and physical factors and have increased our understanding of the factors involved at a population or group level. However, specific risk factors may not be active in any given case, and therefore these concepts still do not explain why an individual patient develops MMP. Dworkin et al\textsuperscript{17,18} approached the question of pathophysiology using prospective studies and showed early on the importance of risk factors such as the psychologic profile and the presence of pain in other sites. These and other studies have established psychosocial distress and impaired pain modulation as the two major emerging factors in understanding the etiology of persistent MMP.\textsuperscript{19-22} It has become clear that these factors act within a milieu of further instigating or modulatory factors such

<table>
<thead>
<tr>
<th>Table 2-1</th>
<th>Diagnostic criteria for masticatory myofascial pain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Myofascial pain*</td>
</tr>
<tr>
<td></td>
<td>Regional, dull, aching pain</td>
</tr>
<tr>
<td></td>
<td>• Aggravated by mandibular function</td>
</tr>
<tr>
<td></td>
<td>Hyperirritable sites or trigger points</td>
</tr>
<tr>
<td></td>
<td>• Frequently found within a taut band of muscle tissue or fascia</td>
</tr>
<tr>
<td></td>
<td>• Provocation of these trigger points alters the pain complaint and reveals a pattern of referral</td>
</tr>
<tr>
<td></td>
<td>• More than 50% reduction of pain is inducible by muscle stretch preceded by trigger point treatment with vapocoolant spray or local anesthetic injection</td>
</tr>
<tr>
<td></td>
<td>Signs and symptoms that may accompany pain</td>
</tr>
<tr>
<td></td>
<td>• Sensation of muscle stiffness</td>
</tr>
<tr>
<td></td>
<td>• Sensation of acute malocclusion, not clinically verified</td>
</tr>
<tr>
<td></td>
<td>• Ear symptoms, tinnitus, vertigo, toothache, tension-type headache</td>
</tr>
<tr>
<td></td>
<td>• Decreased mouth opening; passive stretching increases opening by &gt; 4 mm</td>
</tr>
<tr>
<td></td>
<td>• Hyperalgesia in the region of referred pain</td>
</tr>
<tr>
<td></td>
<td>No psychosocial assessment required</td>
</tr>
<tr>
<td></td>
<td>Axis I: Physical findings</td>
</tr>
<tr>
<td></td>
<td>Complaint of pain of muscle origin</td>
</tr>
<tr>
<td></td>
<td>• In jaw, temples, face, preauricular, or auricular at rest or during function</td>
</tr>
<tr>
<td></td>
<td>Pain associated with localized areas of tenderness to palpation in muscle</td>
</tr>
<tr>
<td></td>
<td>Pain on palpation in more than three of the following sites and at least one of which is ipsilateral to the pain complaint (right/left [R/L] muscles count for separate sites):</td>
</tr>
<tr>
<td></td>
<td>• R/L temporalis: posterior, middle, anterior, tendon (8 sites)</td>
</tr>
<tr>
<td></td>
<td>• R/L masseter: origin, body, insertion (6 sites)</td>
</tr>
<tr>
<td></td>
<td>• R/L posterior mandibular region (2 sites)</td>
</tr>
<tr>
<td></td>
<td>• R/L submandibular region (2 sites)</td>
</tr>
<tr>
<td></td>
<td>• R/L lateral pterygoid region (2 sites)</td>
</tr>
<tr>
<td></td>
<td>Myofascial pain as above accompanied by:</td>
</tr>
<tr>
<td></td>
<td>• Stiffness of muscles</td>
</tr>
<tr>
<td></td>
<td>• Pain-free unassisted mandibular opening of &gt; 40 mm</td>
</tr>
<tr>
<td></td>
<td>• With assistance, an increase of ≥ 5 mm in mandibular opening</td>
</tr>
<tr>
<td></td>
<td>Axis II: Psychosocial comorbidity\textsuperscript{4}</td>
</tr>
<tr>
<td></td>
<td>Pain intensity and pain-related disability</td>
</tr>
<tr>
<td></td>
<td>• Graded chronic pain scale</td>
</tr>
<tr>
<td></td>
<td>• Jaw disability checklist</td>
</tr>
<tr>
<td></td>
<td>Depression and somatization</td>
</tr>
<tr>
<td></td>
<td>• Symptom checklist for depression and somatization (SCL-90)</td>
</tr>
</tbody>
</table>

\textsuperscript{*}American Academy of Orofacial Pain.\textsuperscript{2}
\textsuperscript{†}Research Diagnostic Criteria for Temporomandibular Disorders.\textsuperscript{3}
\textsuperscript{‡}Other validated measures may be used.\textsuperscript{4}
Nervous System Alterations in MMP Patients

Pain modulation and MMP

Complex behavioral influences such as anxiety, depression, belief states, and cognition can separately influence pain perception and the pain experience. A key system that is able to
and that the activated HIF-1 can induce osteoclastogenesis via repression of osteoprotegerin expression.

**Subchondral bone**

An intriguing aspect of OA is the increased turnover and subsequent changes in the subchondral bone. One of the few known molecules that could initiate this high turnover is VEGF. It has been observed that the deep articular chondrocytes show VEGF expression 2 weeks after OA induction by anterior cruciate ligament transection (ACL/T) or a combination of ACL/T and partial meniscectomy in the rat. In vitro studies have shown that chondrocytes respond to mechanical overloading with the expression of HIF-1α and VEGF, subsequently leading to the induction of MMP-1, -3, and -13, which mediate a cartilage-destructive process. VEGF has also been shown to promote angiogenesis and osteoclastogenesis as a consequence of overloading, which could potentially initiate a cascade leading to subchondral plate resorption and high subchondral bone turnover (Fig 3-5).

An interesting molecule in this respect is sclerostin, which was found to have greater expression in the chondrocytes in OA joints than in the chondrocytes in healthy joints. Sclerostin inhibits the wingless/integrated (Wnt) signaling pathway, and Wnt signaling is known to be critically involved in the biology of the cartilage-subchondral bone unit. An attempt to avoid an OA-related phenotype upregulation of sclerostin by chondrocytes could be the rescue response. In this way, cartilage degradation could be prevented while bone remodeling would be stimulated. This hypothesis has been supported by study findings in a rat model in which Wnt signaling inhibition indeed protected against the progression of OA.
Stress-Field Translation and Condyle Metabolism

Mechanical loading during movement is essential for maintenance of the articular tissues because, by regulating tissue remodeling, mechanical forces maintain healthy cartilage. However, not all loading conditions have a positive effect on cartilage metabolism. For instance, while cyclic loading or loading within a physiologic range increases proteoglycan synthesis, cartilage overloading, underloading, and static loading cause proteoglycan depletion. Mechanical loading leads to compression of the articular cartilage and matrix deformation, stimulating the chondrocytes’ metabolic activity. In particular, the mechanical loading leads to complex changes within the tissue that include matrix and cell deformation, hydrostatic pressure gradients, fluid flow, altered matrix water content and changes in osmotic pressure, and ion concentration. Chondrocyte mechanoreceptors such as mechanosensitive ion channels and integrins are involved in recognition of these mostly physical changes (mechanotransduction). For instance, activation of the mechanosensitive ion channels by the mechanical stimulation leads to ion influx, in particular calcium ions, and activates intracellular signaling pathways that modulate protein synthesis (see Ragan et al for detailed information).

Chondrocytes respond to mechanical stimuli by activating anabolic or catabolic pathways. Changes from anabolic to catabolic signaling can lead to DJD. Consequently, cell-matrix interactions are essential for maintaining the integrity of the articular cartilage, and an intact matrix is essential for chondrocyte survival and transmission of mechanical signals.

The authors’ pilot experiments showed that plowing can compromise cartilage integrity in a force-related manner by causing cell death at the cartilage surface. In addition, plowing alters chondrocyte metabolism by increasing the expression of the catabolic enzyme stromelysin-1 (matrix metalloproteinase 3 [MMP-3]), slightly decreasing that of aggrecan, and augmenting the degree of glycosaminoglycan (GAG) degradation (Figs 9-8 and 9-9). Plowing caused an increase in catabolic activities starting with a compression force of 25N and a decrease of the anabolic activity starting between 50 and 100 N. These results should be interpreted with caution and without inferring that this loading regimen definitely initiates a degenerative process, because the altered metabolism could simply represent remodeling activity.

Cartilage has a poor intrinsic healing capacity. Nevertheless, after injury, the healthy chondrocytes promote a remodeling process involving the elimination of the damaged matrix and the building of new extracellular matrix (ECM). It is therefore possible that in the plowed cartilage the viable chondrocytes start remodeling the matrix by producing...
has been shown that degradation of HA by hyaluronidase does not detrimentally affect joint lubrication. Interestingly, there is no significant difference in the molecular size of HA in the synovial fluid of patients with disc displacement and healthy individuals. Thus, it was realized that HA is not a lubricant per se and that adding high–molecular weight HA to the synovial fluid does not affect the friction coefficient. However, a significant increase in the coefficient of friction was observed after the HA in the synovial fluid was changed to low–molecular weight HA, thus supporting the possibility that HA has an indirect effect on joint lubrication. Hence, an array of other possible functions of HA in joint movement has been proposed, among which were the roles of a space filler, a wetting agent, a flow barrier within the synovium, and a protector of the cartilage surfaces. Besides its mechanical role in joint function, HA has been found in vitro to support joint integrity biochemically by acting as a protector against the action of phospholipase, an inhibitor of phagocytosis and chemotaxis, and as an anti-inflammatory agent. It also prevents the formation of scar tissue and angiogenesis. According to Swann et al., the main synovial lubricant is a large water-soluble proteoglycan, which they termed lubricin and which is also known as superficial zone protein and proteoglycan 4. The multifaceted lubricin, which is encoded by the PRG4 gene, has a molecular weight of 206 kDa and consists of approximately equal proportions of protein and glycosaminoglycans. The latter contain negatively charged sugars, which possibly create the strong repulsive hydration forces that enable the molecule to act as a boundary lubricant. It is synthesized and selectively secreted by superficial chondrocytes in the articular cartilage (hence the term superficial zone protein) and by synovial lining fibroblast-like cells. The lubricin in the synovial fluid reduces the coefficient of friction of the articular cartilage surfaces, and accordingly it prevents cartilage wear and synovial cell adhesion and proliferation. Several studies also imply that lubricin expression plays a role in condylar cartilage growth.

It has been proposed that lubricin expression is regulated by mechanical stress; however, its influence regarding the TMJ remains unclear. Exposing synoviocytes, chondrocytes,
Page numbers with “f” denote figures; those with “t” denote tables; those with “b” denote boxes.

1,2-dimyristoyl-sn-glycero-3-phosphocholine, 128
5-hydroxytryptophan, 4

A
A-alpha fibers, 3
A-beta fibers, 3
Acute orofacial pain, 83–84, 92
ADAMTS4, 158–159
Adaptation, 120
A-delta fibers, 3–4, 6
Adenosine 5-triphosphate, 4
Adenosine monophosphate-activated protein kinase, 42
Adenoviral vector expressing human insulinlike growth factor-1, 179
Advanced glycation end products, 161
Aggrecanases, 34, 159, 180
Allodynia, 6, 15, 21
alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate, 9
Amygdala, 151
Anabolic signaling, 107
Anchored disc phenomenon, 127
Angiogenesis
 factors that affect, 157
osteochondral, 42
Animal models
 biomarkers developed using, 159–161
 of osteoarthritis, 41
Anterior cingulate cortex, 13, 147f, 148
Anterior insula, 149
Antidepressants, 53, 186–187, 189
Arterial spin labeling, 143
Arthrocentesis, 127–129
Arthrography, 135
Articular bone, 172
Articular cartilage
 autophagy in, 42
 avascular properties of, 42, 116
collagenous fibers of, 116
deforming properties of, 113, 116
evolution of, 172
metabolism of, 177
in osteoarthritis, 34–39, 37f
principal stress in, 115, 117f
Articular disc
 anteriorly displaced, 118
description of, 99, 101
energy density vs internal strain energy, 106
finite element analysis of, 114
friction effects on, 118
internal derangement effects on, 119
joint lubrication functions of, 102
lubricating system of, 124
mechanical behavior of, 118–119
plowing force of, 104
Astrocytes, 13
Autonomic nervous system, 20
Autophagy, 42

B
Back pain, 51
Benzodiazepines, 186–187
Biglycan, 160
Bilateral sagittal split osteotomies, 84
Biomarkers
 aggrecanases, 159
 animal models used to develop, 159–161
 collagenases, 158–159
 C-terminal telopeptide-II, 159
 interleukin-1β, 156–157
 monocyte chemoattractant protein, 157
 prostaglandins, 157
 of temporomandibular joint-osteoarthritis, 159–161
tumor necrosis factor-α, 156–157
Biomechanical modeling, 137–138, 138f, 140
Biomedical engineering, 138–140
Blood oxygen level–dependent imaging, 142
Bone morphogenetic proteins
 BMP-2, 167, 179
description of, 40
Boundary lubrication, 124
Bradykinins, 4
Brain-derived neurotrophic factor, 4
Brain-imaging studies, 13
Brainstem nociceptive processing, 6, 8
Bruxism
 description of, 24, 62
sleep, 61–62

C
Calcitonin gene-related peptide, 6
Candidate gene studies, 72
Cannabinoids, 190–191
Cartilage. See Articular cartilage.
Catabolic signaling, 107
Catastrophizing, 52, 95
Catechol-O-methyltransferase, 20, 25–26, 71, 87
Central sensitization, 8–12, 14–15, 141, 188, 190
Cerebral blood flow, 13
C-fibers, 4, 6
Chairside screening, 86
Chemical condylectomy, 128
Chemokines, 157
Chondrocyte(s)
  anabolic and catabolic factors that regulate, 38f
description of, 34, 36f, 38f
hypertrophic-like changes, 36f, 40f
mechanical stimuli effects on, 107
osteoarthritic, 102
sclerostin expression in, 39
vascular endothelial growth factor induction in, 38
Chondrocyte receptors, 38
Chondroitin sulfate, 159
Chronic pain
  acute pain progression to, 92
description of, 151
  factors involved in, 50f
  glutamate and, 191
  masticatory myofascial pain and, 95
  prefrontal cortex involvement in, 13
  risk model for, 96
  sleep disorders and, 57, 60–62
Cinderella hypothesis, 24
Cingulate cortex, 147f, 148–149
Cingulotomy, 148
Cluster headaches, 26
Clustering, 96–97
Cognitive-behavioral therapies, 53, 63, 94–95, 97
Collagenases, 34
Collagenous fibers, 116
Community genomics, 74
Comorbid pain conditions
description of, 1
evidence-based treatment for, 53
factors that affect, 52
fibromyalgia, 20–21, 26, 49–50
headache, 50, 62–63
implication of, 51t
masticatory myofascial pain, 26
migraine headache, 50
neck pain, 51
self-management programs for, 53
sleep disturbances caused by, 61
  studies of, 48t–49t
summary of, 53
treatment of, 52–53
treatment responsiveness affected by, 95
Complete Freund’s adjuvant, 9
Complex diseases
  characteristics of, 92
definition of, 92
description of, 72–73
  immune system’s role in, 73, 73f
  phenotype, 75–76
Computer-aided design/computer-aided manufacturing technology, 139
Conditioned pain modulation, 83, 83f
Condition-specific measures, 93
Condylar blastema, 172
Condyle-fossa distance, 103f, 104
Cone beam computed tomography, 131, 134–135, 136f
Coping, 52
Corticosteroids, 128, 186
COX-1, 157
COX-2, 157
Craniofacial deformities, 137
C-terminal telopeptide-II, 159
Cytokines
description of, 126
  interleukin-1β, 156–157
  monocyte chemoattractant protein, 157
  prostaglandins, 157
  tumor necrosis factor-α, 156–157
D
Deep bite, 23
Deep sequencing, 77
Deep sleep, 58
Degenerative joint disease. See Osteoarthritis.
Depression, 22, 93, 95
Descending modulation, 10–12, 11f
Diagnostic imaging, 133–137
Diffuse noxious inhibitory controls, 10, 83–84, 86
Diffusion tensor imaging, 142
Dimethyl sulfoxide, 186
Disc displacement, 109, 123, 136f
Discoidin domain receptor 2, 160
Disease
  complex. See Complex diseases.
  preclinical symptoms of, 92
Dorsolateral prefrontal cortex, 12
Dynamic brain imaging, 131
Dynamic loading, 102
Dynamic stereometry, 103, 109–110
E
Education-based self care model, 94
Effective connectivity magnetic resonance imaging, 142
Endochondral ossification, 40–41, 172
Endophenotypes, 76
Energy density, 106
Enkephalin, 10
Enzymes, degradative, 158–159
Epigenetics, 69, 73–74
Epigenome, 74
Epigenomics, 74
Ethnicity, 21–22
Etiology, 91–92
Evidence-based treatment, 53
Extracellular matrix, 34–35, 41, 107
F
Fibromodulin, 160
Fibromyalgia, 20–21, 26, 49–50
Fibrous mesenchyme, 169
Finite element analysis
  applications of, 99, 115–119
  challenges for, 120
  description of, 113
  future of, 119–120
  history of, 114–115
  purposes of, 114
  safety applications of, 119
  stress and strain values, 115–116
  surgical planning uses of, 119
  temporomandibular disorders application of, 119–120
  temporomandibular joint applications of
    adaptation predictions, 120
    history of, 114–115
    mechanical behavior, 118–119
    normal function, 115–116
    pathologic function, 118
Friction
  articular disc affected by, 118
  inadequate lubrication as cause of, 127
Functional brain imaging, 77
Functional connectivity magnetic resonance imaging, 142
Functional magnetic resonance imaging, 142

G
Gabapentin, 4, 188–189, 191
Gene expression, 73–74
Gene variants, 71f
Gene-environment interactions, 69, 72, 75, 77
Gene-gene interactions, 69, 72, 75, 77
Generic treatments, 96
Genes, in complex diseases, 72
Genetics
  costs of, 70
  literature regarding, 14
  masticatory myofascial pain and, 25–26
  overview of, 69–70
  single nucleotide polymorphisms, 69
Genome-wide association studies, 70–71, 77
Genomic technology
  advances in, 70–72
  genome-wide association studies, 70–71, 77
  single nucleotide polymorphisms, 70–71
Glia, 13
Glial cells, 191
Glutamate, 150, 191
Glutamate receptors, 21
Glutamate transporter, 13
Glycosaminoglycan, 107, 108f, 125
Gray matter volume, 146–148
Growth factors, 41

H
Hard tissue imaging, 133–135, 134f
Headaches
  in children, 63
  migraine, 50, 63
  sleep bruxism associated with, 62
  sleep disturbances and, 62–63
  tension-type, 62–63
'H-MRS. See Proton magnetic resonance spectroscopy.
Host susceptibility, 26
Human Genome Project, 72
Human microbiome, 74–75, 75f
Hyaline cartilage, 118–119
Hyaluronic acid, 34, 35f, 42, 124–125, 128
Hyaluronidase, 125
Hydrostatic lubrication, 124
Hydrostatic pressure, 115
Hyperalgesia, 6, 15
Hypoxia, 25, 157–158
Hypoxia-inducible factor, 38, 158

I
Imaging. See also Neuroimaging.
  advances in, 139–140
  biomechanical modeling after, 137–138, 138f, 140
  biomedical engineering uses of, 138–140
  cone beam computed tomography, 131, 134–135, 136f
  diagnostic, 133–137
  hard tissue, 133–135, 134f
  magnetic resonance imaging. See Magnetic resonance imaging.
    of pain, 13
    soft tissue, 135–137
IMMPACT. See Initiative on Methods, Measurement, and Pain
  Assessment in Clinical Trials.
Immune system, 73, 73f
Incident-cohort studies, 91
Inferior parietal lobule, 147f
Inflammatory mediators
  description of, 4, 155
  interleukin-1β, 156–157
  tumor necrosis factor-α, 156–157
Initiative on Methods, Measurement, and Pain Assessment in
  Clinical Trials, 93
Insomnia, 61, 63
Insula, 149–150
Insular cortex, 149–150
Insulinlike growth factor-1, 179–180
Integrated Pain Adaptation Model, 25
Interdisciplinary treatment, 52–53
Interleukin-1β, 156–157
Interleukin-1 receptor antagonist, 180–181
Intermediate phenotypes, 76
Internal derangements, 93, 119
Internal strain energy, 106
*International Classification of Sleep Disorders*, 60–61
Intra-articular injections
  - bone morphogenetic protein 2, 179
  - corticosteroids, 186
  - insulinlike growth factor-1, 179–180
  - interleukin-1 receptor antagonist, 180–181
  - NEL-like molecule 1, 180
  - transforming growth factor beta, 178
Intraoral appliances, 53, 95
J
  - Jaw-closing muscles, 113
K
  - Keratan sulfate, 159
L
  - Lateral pain system, 146–148
  - Lateral pterygoid muscle, 120
  - Lifestyle, 25, 27
  - Light sleep, 58
  - Liposomes, 128
  - Low-threshold mechanoreceptive neurons, 6, 8
  - Lubrication, of temporomandibular joint, 123–129
  - Lubricin, 34, 42, 125–126
M
  - Macrophage colony-stimulating factor, 41
  - Magnetic resonance imaging
    - applications of, 136f
    - arterial spin labeling, 143
    - description of, 135–137
    - effective connectivity, 142
    - functional, 142
    - functional connectivity, 142
    - history of, 142
    - methods, 142
    - operating principles of, 142–143, 143f
  - Malocclusions, 23
  - Mandibular advancement appliances, 64
  - Mandibular condylar cartilage, 173
  - Mandibular hypoplasia, 119
  - Masticatory myofascial pain
    - algorithm of, 19f
    - autonomic nervous system and, 20
    - characteristics of, 17
    - chronic pain and, 95
    - comorbidities, 26
    - definition of, 47
    - diagnostic criteria for, 18t
    - ethnicity and, 21–22
    - genetic factors, 25–26, 151
    - historical perspectives on, 17–19
    - host susceptibility to, 26
    - lifestyle factors, 25, 27
    - nervous system alterations in, 19–21
    - neuropeptides and, 20–21, 26
    - occlusion and, 23
    - pain modulation and, 19–20
    - pressure pain thresholds in, 20
    - psychosocial factors, 22–23
    - sex and, 21
    - skeletal morphologic features, 23
    - sleep disturbances and, 26–27, 61
    - temporomandibular joint disorders and, 23–24
    - trauma as cause of, 22
    - trigger points associated with, 25
    - Matrix metalloproteinases, 34–35, 108f, 158, 180
    - Maxillofacial surgery, 119
    - Maximal mouth opening, 123–124
    - Mechanical loading, 107
    - Mechanical temporomandibular disorders, 95–96
    - Meckel's cartilage, 168–169, 172
    - Medial pain system, 148–150
    - Medical care delivery systems, 70
    - Mediolateral stress-field translation, 104–105
    - Medullary dorsal horn, 6
    - Metabolic phenotype, 74
    - Metabotropic glutamate receptors, 9
    - Metagenomic DNA sequencing, 74
    - Methyl salicylate, 186
    - Microbiome, 74–75, 75f
    - Microglia, 13
    - Migraine headache, 74, 75, 75f
    - Migraine headache, 50, 63
    - Mini-anchors, 119
    - Mitochondrial dysfunction, 42
    - Modulus, 81
    - Monocyte chemoattractant protein, 157
    - MRI. See Magnetic resonance imaging.
    - Muscle hypoperfusion, 25
    - Muscle pain
      - exogenous models of, 24
      - pharmacotherapy for, 53
    - Muscle relaxants, 187
    - Myalgia, 23–24
    - Myofascial pain. See Masticatory myofascial pain.
N
  - N-acetylaspartate, 148, 150
  - Neck pain, 22, 51
  - NEL-like molecule 1, 180
  - Nerve growth factor, 4, 21, 42, 190
Neuroglial cells, 191
Neuroimaging. See also Imaging.
  antinociceptive areas studied using, 150
  central pain systems studied using, 146–151
  description of, 131, 141
  future applications of, 150–151
  magnetic resonance imaging. See Magnetic resonance imaging.
  medial pain systems studied using, 148–150
  positron emission tomography, 144, 144f
  temporomandibular disorder studies, 144, 145t
Neuropathic pain, 84, 86, 190–191
Neuropeptides, 20–21, 26
Neuroplasticity, 92, 190
Neutrophins, 4
Next-generation sequencing
  bioinformatics platform for, 72
  description of, 70–72
  whole genome sequencing, 70, 72
NMDA receptor–ion channel complex, 9f
NMDA receptors, 21, 191
nociception
  non-neural processes in, 12–13
  in sleep, 59
nociceptive afferents, 4, 11
nociceptive-specific neurons, 6, 8, 10
Nocturnal migraine headaches, 63
Non-neural processes, 12–13
Nonsteroidal anti-inflammatory drugs, 53, 185–186
Notch1, 172
NREM sleep, 58
N-type calcium channel, 191
Nuclear factor xB, 12, 35
Nucleus raphe magnus, 10
Numeric rating scales, 81

O
Obstructive sleep apnea, 61
Occlusal interferences, 23
Oclusion, 23
Octahedral shear stress, 115
Onabotulinum toxin, 186, 188
Opioid receptors, 10
Opioids, 10, 187, 189–190
OPPERA. See Orofacial Pain Prospective Evaluation and Risk Assessment.
Oral appliances, 64
Orofacial pain
  acute, 83–84
  bruxism secondary to, 62
  central mechanisms of, 6–12
  mandibular advancement appliances for, 64
  peripheral mechanisms of, 3–6, 5f
  21st-century trends, 70

Orofacial Pain Prospective Evaluation and Risk Assessment, 19, 85, 96
Orthodontics, 23
Osteoarthritis
  animal models of, 41
  articular cartilage destruction in, 34–39, 37f, 42
  biologic targets in treatment of, 41–43
  bone changes in, 39–41
  cartilage abnormalities in, 34–39
  characteristics of, 155
  corticosteroids for, 128
  definition of, 33, 101, 131, 177
  etiopathogenic mechanisms of, 34–41, 35f–40f
  features of, 34–41
  friction and, 127
  hyaluronic acid effects in, 42
  inflammatory response in, 41
  lubricin protective effects in, 42
  mitochondrial dysfunction in, 42
  periarticular bone in, 40
  rat meniscectomy model of, 42
  research on, 33–34
  subchondral bone in, 37f, 39f, 39–41
  synovial inflammatory infiltrates in, 41
  synoviopathy associated with, 34
  in temporomandibular joint, 101, 109
  treatment of, 41–43, 177
Osteochondral angiogenesis, 42
Osteophytes, 41
Overloading, 127, 127f

P
Pain
  back, 51
  chronic. See Chronic pain.
  imaging of, 13
  masticatory myofascial pain. See Masticatory myofascial pain.
  neck, 51
  neuropathic, 84, 86, 190–191
  orofacial. See Orofacial pain.
  palpation-induced, 93
  persistence of, 51, 96
  progression of, 52f
  provocarion, 93
  sleep and, 57, 59–60, 63–64
  temporomandibular disorder–related. See Temporomandibular disorder pain.
  Pain adaptation model, 24–25
  Pain modulation, 19–20
  Pain perception
    behavioral conditions that affect, 19
    measurement difficulties for, 72
    Pain-related awakenings, 26
<table>
<thead>
<tr>
<th>Term</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain-related evoked potentials</td>
<td>149</td>
</tr>
<tr>
<td>Palpation-induced pain</td>
<td>93</td>
</tr>
<tr>
<td>Paradoxical sleep</td>
<td>58</td>
</tr>
<tr>
<td>Parafuncional forces</td>
<td>24</td>
</tr>
<tr>
<td>Patient-reported outcomes</td>
<td>93</td>
</tr>
<tr>
<td>Patient-specific model</td>
<td>138f</td>
</tr>
<tr>
<td>Peripheral sensitization</td>
<td>4–6, 14–15</td>
</tr>
<tr>
<td>Personalized medicine</td>
<td>70</td>
</tr>
<tr>
<td>Pharmacogenomics</td>
<td>26</td>
</tr>
<tr>
<td>Pharmacologic treatment</td>
<td></td>
</tr>
<tr>
<td>α2δ</td>
<td>188–189</td>
</tr>
<tr>
<td>antidepressants</td>
<td>53, 186–187, 189</td>
</tr>
<tr>
<td>benzodiazepines</td>
<td>186–187</td>
</tr>
<tr>
<td>cannabinoids</td>
<td>190–191</td>
</tr>
<tr>
<td>future applications</td>
<td>190–191</td>
</tr>
<tr>
<td>historical review</td>
<td>185–186</td>
</tr>
<tr>
<td>ketamine</td>
<td>189, 191</td>
</tr>
<tr>
<td>for muscle pain</td>
<td>53</td>
</tr>
<tr>
<td>muscle relaxants</td>
<td>187</td>
</tr>
<tr>
<td>nonsteroidal anti-inflammatory drugs</td>
<td>53, 185–186</td>
</tr>
<tr>
<td>onabotulinum toxin</td>
<td>186, 188</td>
</tr>
<tr>
<td>opioids</td>
<td>187, 189–190</td>
</tr>
<tr>
<td>selective serotonin reuptake inhibitors</td>
<td>187, 189</td>
</tr>
<tr>
<td>for temporomandibular disorder pain</td>
<td>185–191</td>
</tr>
<tr>
<td>Phenotypes</td>
<td></td>
</tr>
<tr>
<td>functional brain imaging investigations</td>
<td>77, intermediate, 76</td>
</tr>
<tr>
<td>Phospholipase</td>
<td>125</td>
</tr>
<tr>
<td>Phospholipase Aδ</td>
<td>126</td>
</tr>
<tr>
<td>Phospholipids</td>
<td>124, 126, 128–129</td>
</tr>
<tr>
<td>Placebo effect</td>
<td>12, 151</td>
</tr>
<tr>
<td>Plowing force</td>
<td>102, 102f</td>
</tr>
<tr>
<td>Polysomnographic recordings</td>
<td>58, 58b</td>
</tr>
<tr>
<td>Positron emission tomography</td>
<td>144, 144f</td>
</tr>
<tr>
<td>Positron emission tomography/computed tomography</td>
<td>144</td>
</tr>
<tr>
<td>Posterior cingulate cortex</td>
<td>147f, 149</td>
</tr>
<tr>
<td>Postherpetic neuralgia</td>
<td>188</td>
</tr>
<tr>
<td>Preclinical symptoms</td>
<td>92</td>
</tr>
<tr>
<td>Prefrontal cortex</td>
<td>13</td>
</tr>
<tr>
<td>Pregabalin</td>
<td>188–189, 191</td>
</tr>
<tr>
<td>Pressure pain thresholds</td>
<td>20–21</td>
</tr>
<tr>
<td>Primary afferent neurons</td>
<td>5f</td>
</tr>
<tr>
<td>Primary afferents</td>
<td>3</td>
</tr>
<tr>
<td>Primary somatosensory cortex</td>
<td>147f</td>
</tr>
<tr>
<td>Principal stress, in articular cartilage</td>
<td>115, 117f</td>
</tr>
<tr>
<td>Proinflammatory cytokines</td>
<td>126</td>
</tr>
<tr>
<td>PROs.</td>
<td></td>
</tr>
<tr>
<td>Proteoforms</td>
<td></td>
</tr>
<tr>
<td>Protase,</td>
<td></td>
</tr>
<tr>
<td>Prostaglandin E2</td>
<td>20, 157</td>
</tr>
<tr>
<td>Protein kinase C</td>
<td>21</td>
</tr>
<tr>
<td>Proteoglycans</td>
<td>125, 178</td>
</tr>
<tr>
<td>Proton magnetic resonance spectroscopy</td>
<td>142–143</td>
</tr>
<tr>
<td>Proton pump inhibitors</td>
<td>188</td>
</tr>
<tr>
<td>Provocation pain</td>
<td>93</td>
</tr>
<tr>
<td>Psychogenic pain</td>
<td>85</td>
</tr>
<tr>
<td>Psychologic factors</td>
<td>52</td>
</tr>
<tr>
<td>Psychophysics</td>
<td>79–80</td>
</tr>
<tr>
<td>Psychosocial factors</td>
<td>22–23</td>
</tr>
<tr>
<td>P-type calcium channel</td>
<td>191</td>
</tr>
<tr>
<td>Putative etiology</td>
<td>91–92</td>
</tr>
<tr>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>Quantitative sensory testing (QST)</td>
<td></td>
</tr>
<tr>
<td>acute orofacial pain</td>
<td>83–84</td>
</tr>
<tr>
<td>afferent nerve fiber functions assessed with</td>
<td>86</td>
</tr>
<tr>
<td>applications of</td>
<td>85–87</td>
</tr>
<tr>
<td>background of</td>
<td>79–80</td>
</tr>
<tr>
<td>conditioned pain modulation</td>
<td>83, 83f</td>
</tr>
<tr>
<td>description of</td>
<td>20</td>
</tr>
<tr>
<td>diffuse noxious inhibitory controls</td>
<td>83–84, 86</td>
</tr>
<tr>
<td>future applications</td>
<td>85–87</td>
</tr>
<tr>
<td>history of</td>
<td>79–83</td>
</tr>
<tr>
<td>neuropathic pain</td>
<td>84, 86</td>
</tr>
<tr>
<td>response-dependent techniques</td>
<td>82</td>
</tr>
<tr>
<td>somatosensory sensitivity</td>
<td>86–87</td>
</tr>
<tr>
<td>stimuli used in</td>
<td>79–80</td>
</tr>
<tr>
<td>suprathreshold estimation</td>
<td>80</td>
</tr>
<tr>
<td>summary of</td>
<td>87</td>
</tr>
<tr>
<td>thermal detection thresholds</td>
<td>84</td>
</tr>
<tr>
<td>traumatic neuropathic pain</td>
<td>84, 86</td>
</tr>
<tr>
<td>triangulation procedure</td>
<td>81, 82f</td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
<tr>
<td>Receptor activator of nuclear factor κB</td>
<td>41</td>
</tr>
<tr>
<td>Receptor for advanced glycation end products</td>
<td>35, 161</td>
</tr>
<tr>
<td>Rehabilitation treatment model</td>
<td>92, 96</td>
</tr>
<tr>
<td>REM sleep</td>
<td>58</td>
</tr>
<tr>
<td>Research Diagnostic Criteria for TMD</td>
<td>76</td>
</tr>
<tr>
<td>Rheumatic diseases</td>
<td>33</td>
</tr>
<tr>
<td>Rheumatoid arthritis</td>
<td>157</td>
</tr>
<tr>
<td>Rhythmic masticatory muscle activity</td>
<td>62</td>
</tr>
<tr>
<td>Risk factors</td>
<td></td>
</tr>
<tr>
<td>description of</td>
<td>14</td>
</tr>
<tr>
<td>genetic</td>
<td>26</td>
</tr>
<tr>
<td>Rolling/plowing explants test system</td>
<td>109</td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>Satellite glial cells</td>
<td>12</td>
</tr>
<tr>
<td>Scaffold biomaterials</td>
<td>167</td>
</tr>
<tr>
<td>Schizophrenia</td>
<td>74</td>
</tr>
<tr>
<td>Sclerostin</td>
<td>39</td>
</tr>
<tr>
<td>Secondary cartilage</td>
<td>169</td>
</tr>
<tr>
<td>Segmental modulation</td>
<td>10</td>
</tr>
<tr>
<td>Selective serotonin reuptake inhibitors</td>
<td>187, 189</td>
</tr>
</tbody>
</table>
Self care, 96
Self-management program, 53
Self-report condition-specific measures, 93
Serotonin, 20
Serotonin noradrenaline reuptake inhibitors, 189
Serotonin transporter gene, 25
Shear loading, 102
Shear stress, 115–116
Single nucleotide polymorphisms, 70–71
Skeletal morphologic features, 23
Sleep
average duration of, 57
brain activity during, 58
deep, 58
definition of, 57
fragmentation of, 59
light, 58
medication effects on, 63
nociception attenuation during, 59
NREM, 58
pain and, 57, 59–60, 63–64
paradoxical, 58
pathophysiology of, 57–58
polysomnographic recordings of, 58, 58b
REM, 58
in sleep bruxism patients, 62
Sleep arousals, 58, 61
Sleep bruxism, 24, 61–62
Sleep deprivation
description of, 59
migraine headaches precipitated by, 63
Sleep disorders/disturbances
assessment of, 63, 64b
chronic pain and, 57, 60
chronic widespread pain and, 61–62
classification of, 60t, 60–61
comorbid pain conditions as cause of, 61
description of, 26–27
headaches and, 62–63
insomnia, 61, 63
masticatory myofascial pain and, 26–27, 61
temporomandibular disorders and, 61
treatment of, 63
Sleep hygiene, 63
Sleep-disordered breathing, 61
Sleep-related breathing disorders, 61
Sleep-related movement disorder, 62
SNRIs. See Serotonin noradrenaline reuptake inhibitors.
Social support, 52
Soft tissue imaging, 135–137
Somatosensory cortex, 147f, 148
Static loading, 102
Stimulus-detection thresholds, 80
Strain, 115–116
Stress
disorders related to, 22
gene effects during, 76
Stress (force)
collagenous fiber resistance to, 116
finite element analysis of, 115–116
octahedral shear, 115
shear, 115–116
Stress relaxation, 118
Stress-field translation
condyle metabolism and, 107–109
description of, 103–105
mediolateral, 104–105
recording of, 109
Subchondral bone, in osteoarthritis, 37f, 39f, 39–41
Subchondral sclerosis, 40
Subnucleus caudalis, 6, 8
Suction cup effect, 124
Superficial zone protein, 125
Suprathreshold estimation, 80–83, 81f
Surface-active phospholipids, 124, 126–127
Sympathetic nervous system, 25
Synovial cells, 34
Synovial chondromatosis, 136f
Synovial joints
lubrication, 124–126
osteoarthritis and, 155
Synovitis, 159
T
Temporomandibular disorder pain
comorbid conditions effect on, 49–51, 51t
etiology of, 141
factors that affect, 52
fibromyalgia and, 49–50
migraine headache and, 50
persistence of, 51, 96
pharmacologic treatment of, 185–191
prognosis for, 51
progression of, 52f
signs and symptoms of, 47
sleep fragmentation as cause of, 61
Temporomandibular disorders
condition-specific measures for, 93
definition of, 13, 47
finite element analysis applications, 119–120
masticatory myofascial pain and, 23–24
mechanical, 95–96
overview of, 13–15
prevalence of, 47, 167
primary pain-related, 95
Temporomandibular joint
anatomy of, 168–169
arthralgia of
causes of, 123
description of, 47
intraoral appliances for, 53
clicking of, 93
development of, 168–169
disc. See Articular disc.
dynamic loading of, 102
evolution of, 169–173
finite element analysis of. See Finite element analysis.
imaging of, 133–140
immobilization of, 127
load distribution in, 113
locking of, 93
lubrication of, 123–129
osteoarthritis onset in, 101, 109
shear loading in, 102
static loading of, 102
stress-field translation in, 103–105
tractional forces in, 102–103
Tension-type headaches, 62–63
Testing algorithms, 80
Thalamocortical nociceptive processing, 8
Thalamus, 147f, 147–148
Tissue engineering, 167–174
Tissue inhibitors of metalloproteinase 1, 38, 109, 158
Toll-like receptors, 12
Tractal forces, 102–103
Transcription factors, 36f
Transforming growth factor beta, 178
Transforming growth factor beta-1, 167
Transient receptor potential receptors, 4
Trauma
masticatory myofascial pain secondary to, 22
neuropathic pain associated with, 84, 86
Treatment
advances in, 165
anticipated clinical applications of, 96–97
classification of, 93–94
comorbid pain conditions, 52–53
etiologic effects on, 91–92
generic, 96
goals of, 52
interdisciplinary, 52–53
multimodal plan of, 53
pharmacologic. See Pharmacologic treatment.
presenting condition and, matching between, 94
rehabilitation model of, 92, 96
Treatment responsiveness
behavioral factors that affect, 95
catastrophizing effects on, 95
clustering effects on, 96–97
comorbid pain conditions effect on, 95
factors that affect, 94–96
level of analysis effects on, 95
measurement of, 92–96
objective measures of, 93
patient-reported outcomes, 93
physical factors that affect, 95
predictions about, 92
self-report condition-specific measures of, 93
Triangulation, 81, 82f
Tricyclic antidepressants, 186
Trigeminal brain complex, 6, 8
Trigeminal brainstem nuclei, 146
Trigeminal nociceptive pathways, 14
Trigeminal somatosensory pathways, 7f
Trigeminal tractotomy, 6
Trigger points, 25
TRPV1, 190
Tumor necrosis factor-α, 4, 156–157, 161
U
Unilateral mandibular hypoplasia, 119
V
Vanilloid receptor 1. See TRPV1.
Vascular endothelial growth factor, 38, 42, 157–158
Ventroposterior nucleus, 8
Vicious cycle theory, 23
Viscoelasticity, 118
Visual analog scales, 81
Vi/Vc neurons, 13
Voltage-gated calcium channels, 191
von Mises stress, 115
Voxel-based morphometry, 142, 149
W
Wakefulness, 58
Whiplash, 22
White matter volume, 148–149
Whole genome sequencing, 70, 72
Wide dynamic range neurons, 6, 8, 10
Widespread Pain Index, 49
X
X-rays, 133