Contemporary Restoration of
ENDODONTICALLY TREATED TEETH
Evidence-Based Diagnosis and Treatment Planning

Edited by

Nadim Z. Baba, DMD, MSD
Professor of Restorative Dentistry
Director
Hugh Love Center for Research and Education in Technology
Loma Linda University School of Dentistry
Loma Linda, California
Contents

Foreword vii
Preface viii
Contributors ix

Part I: Treatment Planning for Endodontically Treated Teeth

1. **Impact of Outcomes Data on Diagnosis and Treatment Planning**
 Charles J. Goodacre and W. Patrick Naylor
 Page 3

2. **Treatment Planning Considerations for Endodontically Treated Teeth**
 Robert A. Handysides and Leif K. Bakland
 Page 19

3. **Treatment Options and Materials for Endodontically Treated Teeth**
 Nadim Z. Baba and Charles J. Goodacre
 Page 33

Part II: Methods of Restoration for Endodontically Treated Teeth

4. **Principles for Restoration of Endodontically Treated Teeth**
 Nadim Z. Baba, Charles J. Goodacre, and Fahad A. Al-Harbi
 Page 61

5. **Cementation of Posts and Provisional Restoration**
 Faysal G. Succaria and Steven M. Morgano
 Page 75

6. **Tooth Whitening and Management of Discolored Endodontically Treated Teeth**
 Yiming Li
 Page 91
Part III: Management of Severely Damaged Endodontically Treated Teeth

7 Crown Lengthening 107
Nikola Angelov

8 Preprosthetic Orthodontic Tooth Eruption 115
Joseph G. Ghafari

9 Intra-alveolar Transplantation 127
Antoanela Garbacea, Nadim Z. Baba, and Jaime L. Lozada

10 Autotransplantation and Replantation 137
Leif K. Bakland and Mitsuhiro Tsukiboshi

11 Osseointegrated Dental Implants 149
Juan Mesquida, Aladdin J. Al-Ardah, Hugo Campos Leitão, Jaime L. Lozada, and Aina Mesquida

Part IV: Treatment of Complications and Failures

12 Repair of Perforations in Endodontically Treated Teeth 167
George Bogen, C. John Munce, and Nicholas Chandler

13 Removal of Posts 181
Ronald Forde, Nadim Z. Baba, and Balsam Jekki

14 Removal of Broken Instruments from the Root Canal System 195
David E. Jaramillo

15 Endodontic Treatment of a Tooth with a Prosthetic Crown 201
Mathew T. Kattadiyil

16 Retrofitting a Post to an Existing Crown 207
Nadim Z. Baba, Tony Daher, and Rami Jekki

Index 213
Foreword

It is an honor to have been invited to write the foreword for Dr Nadim Baba’s text on the restoration of endodontically treated teeth. The last book on this topic, published by Quintessence, was authored by Shillingburg and Kessler in 1982. Three decades later, this new book is much needed and long overdue.

Dr Baba’s interest in the restoration of pulpless teeth dates back to his graduate-school days. I served as his program director and his principal research advisor during his studies at Boston University in the postdoctoral prosthodontic program, where the title of his master’s project and thesis was “The Effect of Eugenol and Non-eugenol Endodontic Sealers on the Retention of Three Prefabricated Posts Cemented with a Resin Composite Cement.” Dr Baba certainly has come a long way since receiving his certificate of advanced graduate study and master of science in dentistry degree in 1999. He is now a Diplomate of the American Board of Prosthodontics and a full professor at Loma Linda University School of Dentistry, and he is about to publish this comprehensive book on the restoration of endodontically treated teeth.

This new text has a wealth of evidence-based information on all facets of restoration of endodontically treated teeth and will serve as an indispensable reference not only for dentists involved in the restoration of pulpless teeth, such as general practitioners and prosthodontists, but also for dentists who do not place restorations but are engaged in planning treatment for structurally compromised teeth, such as endodontists, periodontists, and oral surgeons. With the well-documented success of osseointegrated implant-supported fixed restorations, combined with a better understanding of the factors that can influence the prognosis of severely broken down teeth, the profession’s approach to planning treatment for these teeth has evolved, and this text offers a well-balanced, contemporary approach to the topic of treatment planning.

Dentists encountering treatment planning dilemmas, such as determining when to extract a compromised tooth and when to retain it and restore it, can find the answers to most of their questions in this first-rate text. Traditional principles and techniques are reviewed and reinforced, along with modern materials and methods, all with a firm foundation in the best available scientific evidence and with an emphasis on clinical studies. Many of the chapters provide comprehensive, step-by-step descriptions of technical procedures with accompanying illustrations to guide the reader through all aspects of restoring pulpless teeth, including fabrication of various foundation restorations, cementation techniques, and methods of provisionalization of endodontically treated teeth. Preprosthetic adjunctive procedures, such as surgical crown lengthening, repair of perforations, and orthodontic measures, are also described and illustrated.

Dr Baba has assembled a group of renowned experts on various topics related to the restoration of pulpless teeth, and these experts have collectively produced this outstanding text, which will remain a definitive reference for years to come. The profession as a whole is very fortunate to have this text. Many thanks must go to Dr Baba for undertaking this monumental task and to all contributing authors for their time and efforts in helping Dr Baba produce this new book on such a very important subject.

Steven M. Morgano, DMD
Professor of Restorative Sciences and Biomaterials
Director, Division of Postdoctoral Prosthodontics
Boston University Henry M. Goldman School of Dental Medicine
Boston, Massachusetts
My interest in the restoration of endodontically treated teeth dates back to my graduate-school days at Boston University. When working on my master’s project and thesis and later while studying for the American Board of Prosthodontics exam, I realized that very few books dealt with the restoration of pulpless teeth. The first book on that topic was published by Quintessence in 1982; two decades later, three books were published but all were somewhat limited in their scope. They dealt mainly with fiber posts, their characteristics, and their clinical applications.

This book is primarily intended to be a manuscript that reviews the basic principles of diagnosis and treatment planning and describes numerous treatment options and the techniques recommended for contemporary treatment of endodontically treated teeth. The purpose of this book is to provide general dentists, endodontists, prosthodontists, and dental students (postgraduate and predoctoral) with a comprehensive review of the literature and evidence-based information for the treatment of endodontically treated teeth, keeping in mind the integration of systematic assessments of clinically relevant scientific evidence.

Four major themes are discussed. The first part focuses on treatment planning, treatment options, and materials used for the restoration of endodontically treated teeth. The second part reviews the principles and methods of restoration along with cementation, provisional restoration, and management of discolored endodontically treated teeth. The third part describes the different aspects of the management of severely damaged pulpless teeth. In the final part, treatment of complications and failures is reported.

Acknowledgments

I wish to express my appreciation and indebtedness to all my friends and colleagues who contributed chapters, sections of chapters, or clinical cases in specific areas in which they are experts. Without them the book would not have been possible.

I would like to take the opportunity to thank Leif Bakland, Zouheir Salamoun, W. Patrick Naylor, and the dean of my school, Loma Linda University, Charles J. Goodacre, for their counsel and help during the preparation of the manuscript.

Most importantly, I extend my special thanks to Ms Lisa Bywaters and the staff of Quintessence Publishing for their professionalism and guidance in bringing my book to life.

I also would like to acknowledge my teachers and mentors who had a great impact on my visions, attitude, and career: Pierre Boudrias, Hideo Yamamoto, Steven M. Morgano, David Baraban (deceased), and Charles J. Goodacre. They remind me of the Lebanese-American poet and writer Gibran Khalil Gibran, who said: “The teacher who is indeed wise does not bid you to enter the house of his wisdom but rather leads you to the threshold of your mind.”

I feel blessed, lucky, and proud to have had the chance to know and work with each one of these people in various stages of my professional career.
Contributors

Aladdin J. Al-Ardah, DDS, MS
Assistant Professor
Advanced Education Program in Implant Dentistry
Loma Linda University School of Dentistry
Loma Linda, California

Fahad A. Al-Harbi, BDS, MSD, DScD
Dean and Assistant Professor
College of Dentistry
University of Dammam
Dammam, Saudi Arabia

Nikola Angelov, DDS, MS, PhD
Professor and Director
Predoctoral Program in Periodontics
Loma Linda University School of Dentistry
Loma Linda, California

Nadim Z. Baba, DMD, MSD
Professor of Restorative Dentistry
Director
Hugh Love Center for Research and Education in Technology
Loma Linda University School of Dentistry
Loma Linda, California

Leif K. Bakland, DDS
Ronald E. Buell Professor of Endodontics
Loma Linda University School of Dentistry
Loma Linda, California

George Bogen, DDS
Private practice limited to endodontics
Los Angeles, California

Nicholas Chandler, BDS, MSC, PhD
Associate Professor of Endodontics
University of Otago School of Dentistry
Dundin, New Zealand

Tony Daher, DDS, MSED
Associate Professor of Restorative Dentistry
Loma Linda University School of Dentistry
Loma Linda, California

Lecturer
University of California at Los Angeles
Los Angeles, California

Ronald Forde, DDS, MS
Chair and Assistant Professor of Restorative Dentistry
Loma Linda University School of Dentistry
Loma Linda, California

Antoanela Garbacea, DDS
Private practice
Santa Rosa, California

Joseph G. Ghafari, DMD
Head and Professor
Division of Orthodontics and Dentofacial Orthopedics
Department of Otolaryngology, Head and Neck Surgery
American University of Beirut Medical Center
Beirut, Lebanon

Professor of Orthodontics
Lebanese University School of Dentistry
Beirut, Lebanon

Adjunct Professor of Orthodontics
New York University College of Dentistry
New York, New York
Charles J. Goodacre, DDS, MSD
Dean and Professor of Restorative Dentistry
Loma Linda University School of Dentistry
Loma Linda, California

Robert A. Handysides, DDS
Chair and Associate Professor of Endodontics
Loma Linda University School of Dentistry
Loma Linda, California

David E. Jaramillo, DDS
Clinic Director and Associate Professor of Endodontics
Loma Linda University School of Dentistry
Loma Linda, California

Balsam F. Jekki, BDS
Assistant Professor of Restorative Dentistry
Loma Linda University School of Dentistry
Loma Linda, California

Rami Jekki, DDS
Assistant Professor of Restorative Dentistry
Loma Linda University School of Dentistry
Loma Linda, California

Mathew T. Kattadiyil, DDS, MDS, MS
Associate Professor of Restorative Dentistry
Director
Advanced Specialty Education Program in Prosthodontics
Loma Linda University School of Dentistry
Loma Linda, California

Hugo Campos Leitão, DMD, MSD
Assistant Professor in Periodontics
Universitat Internacional de Catalunya
Barcelona, Spain

Yiming Li, DDS, MSD, PhD
Professor of Restorative Dentistry
Director
Center for Dental Research
Loma Linda University School of Dentistry
Loma Linda, California

Jaime L. Lozada, DMD
Professor and Director
Advanced Education Program in Implant Dentistry
Loma Linda University School of Dentistry
Loma Linda, California

Aina Mesquida, DDS
Resident
Advanced Education Program in Implant Dentistry
Loma Linda University School of Dentistry
Loma Linda, California

Juan Mesquida, DDS
Assistant Professor
Advanced Education Program in Implant Dentistry
Loma Linda University School of Dentistry
Loma Linda, California

Steven M. Morgano, DMD
Professor of Restorative Sciences and Biomaterials
Director
Division of Postdoctoral Prosthodontics
Boston University Henry M. Goldman School of Dental Medicine
Boston, Massachusetts

C. John Munce, DDS
Assistant Professor of Endodontics
Loma Linda University School of Dentistry
Loma Linda, California
Assistant Professor of Endodontics
University of Southern California Ostrow School of Dentistry
Los Angeles, California

W. Patrick Naylor, DDS, MPH, MS
Associate Dean
Advanced Dental Education
Professor of Restorative Dentistry
Loma Linda University School of Dentistry
Loma Linda, California

Faysal G. Succaria, DDS, MSD
Chair and Assistant Professor
Department of Prosthodontics
Boston University Institute for Dental Research and Education
Dubai, United Arab Emirates

Mitsuhiro Tsukiboshi, DDS, PhD
Chairman
Tsukiboshi Dental Clinic
Amagun, Aichi
Japan

Mitsuhiro Tsukiboshi, DDS, PhD
Chairman
Tsukiboshi Dental Clinic
Amagun, Aichi
Japan

Mitsuhiro Tsukiboshi, DDS, PhD
Chairman
Tsukiboshi Dental Clinic
Amagun, Aichi
Japan
Treatment Planning for Endodontically Treated Teeth

1. Impact of Outcomes Data on Diagnosis and Treatment Planning
2. Treatment Planning Considerations for Endodontically Treated Teeth
3. Treatment Options and Materials for Endodontically Treated Teeth
In addition, Schilder\(^1\) named four biologic objectives for these preparations:

1. Treatment procedures are confined to the roots.
2. Necrotic debris is not forced beyond the apical foramina.
3. All pulp tissues are removed from the root canal space.
4. Sufficient space exists for intracanal medicaments and irrigants.

These objectives provide a basis for assessing the quality of the endodontic procedure prior to restoration of the tooth. Deviation from the original canal shape is referred to as transportation of the canal. The greater the transportation, the greater the likelihood of a poor endodontic outcome, resulting in the need for either endodontic retreatment or extraction of the tooth.

Root canal systems

The root canal system is complex (Fig 2-4), and its anatomy has been studied extensively for many years. Of special interest in the current context, Weine et al\(^1\) called attention to the frequent presence of two canals in the mesiobuccal roots of maxillary molars. Pineda and Kuttler\(^1\) and Vertucci\(^1\) developed classification systems for canal configurations in individual roots. Research in root canal morphology has led to descriptions of more than 20 canal configurations.\(^1\)

These considerations are important for the evaluation of a tooth that has undergone RCT. They also point to the challenges inherent to treating teeth with endodontic disease prior to restoration to full function. Achieving full function requires that the treatment-planning process be a teamwork process: RCT can be performed on almost any tooth, but restorability must be determined prior to the endodontic component of treatment. Communication among the various treating dentists before, during, and after RCT offers the best possibility of an optimal outcome.

Assessment of other conditions

Cracked/fractured teeth

Fracture lines involving cusps of teeth have been a problem in dentistry, probably throughout human history. The pain associated with such fracture lines was described by Gibbs,\(^1\) who termed it *cusp fracture odontalgia*. Every dentist has probably had a patient who complains about pain on chewing and later shows up with the broken-off cusp, usually from a premolar tooth. Whether or not the pulp is directly involved (by exposure), it is usually necessary to complete RCT before the tooth is restored. Diagnosis of a fracture line under a cusp, before it breaks off, can be a challenge and will be discussed in the next section on infractions.

Teeth may develop cracks and fracture for a number of reasons, including trauma, excessive masticatory forces, and iatrogenic incidents. Regardless of etiology, when cracks or fractures develop in dental hard tissues it is not possible to repair them, except for a short period of time with bonding agents. In contrast, bone and cartilage routinely undergo repair following fracture. Although tooth fractures and cracks cannot be healed, it is possible in many cases to maintain such teeth for various periods of time following identification and diagnosis.

For convenience in discussing cracks and fractures, three categories will be used: enamel craze lines, infractions, and vertical root fractures (VRFs).

Enamel craze lines. Craze lines are small cracks that are confined to the enamel of teeth (Fig 2-5). They are not typically visible unless light rays highlight them incidentally. They develop over time, so they probably can be found in most teeth eventually. Occasionally they will show stains from exposure to liquids such as coffee and red wine. Because these cracks are confined to enamel, they have no pulpal impact, and no treatment is necessary, except op-
tional bleaching if they are stained. There is no evidence that craze lines progress to involve more than enamel.

Infractions (cracked teeth). The term cracked tooth is commonly used to describe a tooth that has developed an infraction, which is defined as “a fracture of hard tissue in which the parts have not separated”17 (Fig 2-6). Cameron18 incorrectly defined this condition as cracked tooth syndrome; the use of syndrome is not appropriate for pain associated with fractures in teeth. It is, however, a situation with a variety of symptoms, and diagnosis can be very difficult.

Mandibular molars and maxillary molars and premolars are the teeth most frequently associated with infractions. The teeth usually have vital pulps and the infractions typically run in a mesiodistal direction. They begin in the crowns of teeth and progress in an apical direction. Not all teeth with infractions are symptomatic, but when symptoms develop they can range from pain on chewing, to an exaggerated response to cold stimuli, to severe pain episodes that can mimic trigeminal neuralgia; chronic orofacial pain can also develop. The wide range of pain experiences is probably why Cameron18 used the term syndrome to describe this dental situation. The etiology of infractions is probably in most cases related to occlusal forces, whether from regular daily chewing or isolated trauma such as blows to the underside of the mandible.19-25

It is likely that teeth with infractions become symptomatic when the infractions become invaded by bacteria26 (Fig 2-7). Bacteria stimulate inflammation in the pulp, whether or not the infraction communicates directly with the pulp tissue. The inflamed tissue is responsible for the exaggerated cold response. It is also likely that the tooth will become sensitive to biting when the infraction progresses from the tooth crown to the root, and the bacteria that will soon occupy the infraction then stimulate an inflammatory response in the adjacent periodontal ligament (PDL).

Diagnosis of infractions is complicated by many factors. Because infractions are usually located in a mesiodistal direction in the crown, they are not visible on radiographs.

Fig 2-5 Enamel craze lines (arrow) are common and present no particular problem other than their potential for staining.

Fig 2-6 (a) Infractions (arrow) can be identified visually with the help of dyes, in this case a red dye. Infractions usually run in a mesiodistal direction; they may be asymptomatic or associated with pain on chewing and cold stimuli. (b) A tooth extracted because of symptoms associated with an infraction shows the presence of the infraction (arrow). They typically originate in the crown of the tooth and progress in an apical direction. (c) On rare occasions, infractions run in a faciolingual direction (arrow).
3. Remove 1 to 2 mm of gutta-percha from the orifice of the canals to aid in retention of the core. This is only necessary when the pulp chamber is smaller than 3 mm in depth (Fig 3-17c).

4. Use a carbide rotary cutting instrument to make an occlusal access opening in the abutment retainer toward the center of the foundation.

5. Place the modified provisional FPD on the remaining tooth structure, and confirm adequate access to the cavity for ideal amalgam placement and condensation (Fig 3-17d).

6. Confirm proper fit and marginal adaptation of the provisional FPD.

7. Cement the modified provisional FPD with a small amount of provisional cement placed only on the margins of the provisional FPD.

8. Condense the first increments of amalgam into the prepared post spaces using a periodontal probe or an endodontic plugger. Fill the remaining pulp chamber with amalgam up to the occlusal surface of the provisional FPD to ensure an adequate seal, and make occlusal adjustments as needed (Fig 3-17e).

9. At the following appointment, carefully section the provisional FPD by using a tapered rotary cutting instrument to make a vertical groove in the buccal surface (Figs 3-17f and 3-17g).

10. Refine the amalgam foundation for the definitive tooth preparation, and take the definitive impression (Figs 3-17h and 3-17i).

11. Fabricate and cement a new provisional FPD with provisional cement.

The same procedure is used when a provisional crown is used as a matrix for an amalgam core build-up (Fig 3-18).
Types of Posts and Cores

Composite resin

Composite resin is a popular core material because it is easy to use and satisfies esthetic demands. Certain properties of composite resins are inferior to those of amalgam but superior to glass-ionomer materials. Kovarik et al showed that composite resin is more flexible than amalgam. It adheres to tooth structure, may be prepared and finished immediately, and has good color under all-ceramic crowns. Composite resin appears to be an acceptable core material when substantial coronal tooth structure remains but a poor choice when a significant amount of tooth structure is missing.

One disadvantage of composite resin cores is the instability of the material in oral fluids (water sorption). Oliva and Lowe found that composite resin cores were not dimensionally stable when exposed to moisture. However, Vermilyea et al found that the use of a well-fitting provisional restoration will provide the composite resin core with some degree of moisture protection. Hygroscopic expansion of composite resin cores and cements in layered structures with an overlying ceramic layer can generate significant stresses that have the potential to cause extensive cracking in the overlying ceramic layer. Clinically, this implies that all-ceramic crown performance may be compromised if the crowns are luted to composite cores that have undergone hygroscopic expansion.

Another disadvantage is that composite resin is dimensionally unstable (setting shrinkage). Shrinkage during polymerization causes stress on the adhesive bond, resulting in cracks. This can compromise the long-term success of composite resin cores.
Fig 12-8 (a) Mandibular left first molar with a mesial root periapical radiolucency in a 13-year-old asymptomatic girl. The molar exhibits both strip and apical perforations from previous root canal treatment. (b) Strip perforation visible under the DOM at the furcal side of the mesial root (arrow). (c) Working length determination after removal of previous obturation material. (d) White MTA canal obturation to the level of the pulpal floor. (e) Final radiograph of obturation and the fiber post and bonded core. (f) Radiograph at 7 years, showing the complete-coverage restoration and complete periradicular healing. The patient is asymptomatic with the molar in full function. (Courtesy of Dr Marga Ree, Amsterdam.)

Fig 12-9 (a) Maxillary left second premolar in a symptomatic 24-year-old man with a suspected post perforation to the mesiobuccal root aspect. Note the well-circumscribed periradicular radiolucency adjacent to the perforation. (b) Completed access through the metal-ceramic crown. The coronal aspect of the post has been uncovered. (c) Post following removal. (d) Chamber after debridement of the perforation site and preparation for MTA placement. (e) Immediate postoperative radiograph following MTA perforation repair and subsequent completion of nonsurgical endodontic retreatment. (f) Ten-month radiographic review showing complete resolution of the periradicular pathosis. The patient is asymptomatic. (Courtesy of Dr Ryan M. Jack, Colorado Springs, CO.)
Management of Perforations

calcium hydroxide followed by placement of gutta-percha as a perforation repair and filling technique.5,128–132 MTA can be placed with or without a matrix barrier; however, root-end resection may be indicated if the original canal is not accessible after the repair.11 Where apical surgery is not an option, advanced techniques can also provide dedicated channels for conventional obturation after MTA placement and hardening.

Hemorrhage at the perforation site can be challenging when nonobservable subcrestal perforations are being prepared apically or beyond the view of the DOM. Once the perforation is identified, 1.25% to 6.0% NaOCl provides an environment that removes inflammatory tissue, controls hemorrhage, disinfects the perforation site, and conditions the surrounding dentin.133–137 However, the solution must not be propelled into perforation areas because this can often cause severe tissue damage and paresthesia.138–143 Sodium hypochlorite should always be delivered passively, using pipette carriers or cotton pellets, or placed in the pulp chamber and gently transported along the main canal using hand files, avoiding penetration at the wound site. The solution may also be delivered by inserting a small suction cannula into the canal beyond the perforation and then placing the liquid in the chamber to be passively drawn into the canal to beyond the defect. If the perforation does not include the main canal, then NaOCl is gently brought to the limit of the defect interface and frequently replenished until hemostasis is achieved.

Retrograde management of perforations

The goal of surgical repair of root perforations is to provide a reliable seal so that bacteria and their by-products are prevented from entering the periodontium through the root canal system. This procedure should encourage an environment that promotes regeneration of the damaged periodontal tissues and maintains immune cell surveillance. The indications for surgical treatment include excessive extrusion of the repair material, combination (orthograde and retrograde) therapies, perforations inaccessible by nonsurgical means, and failure of nonsurgical repairs.3,5,15,23,106 (Fig 12-10). The location of the perforation is the prime determinant in the strategy and material used in the surgical approach.144

According to Gutmann and Harrison,106 certain aspects of the case must be considered before surgical treatment can be initiated:

- The amount of remaining bone and any surrounding osseous defects
- The overall periodontal status
- The duration and size of the defect
- The surgical accessibility
- The soft tissue attachment level
- The patient’s oral hygiene and medical status
- The surgeon’s soft tissue management expertise

![Fig 12-10](image-url)

(a) Mandibular left first molar in a symptomatic 32-year-old man. Note the presence of a separated file at the mesial root apex and concomitant transportation and perforation of the mesial root canal during previous treatment. (b) Identification of the perforation site. (c) Canal obturation with gray MTA. (d) Surgical resection of the mesial roots, removal of the separated file, and MTA retrofill. (e) Nine-month radiographic review. (f) Three-year recall radiograph showing complete remineralization of the osteotomy site.
Fig 13-3 (a) Schematic of a cast post and core that requires removal for endodontic retreatment. (b) A rotary instrument is used to reduce the diameter of the core. (c) The core is further reduced with a Gonon bur. (d) The core is threaded with a Gonon trephine bur. (e) A mandrel with a washer and cushions in place is threaded on the post, and then the knurled knob is turned to remove the post. (Courtesy of Dr Nadim Z. Baba, Loma Linda, CA.)

Fig 13-4 Gonon post puller device.

Fig 13-5 Munce Discovery Burs (CJM Engineering).
post to protect the tooth from the lifting action of the pliers (Fig 13-6). Should the post be successfully removed at this point, the retreatment of the tooth may proceed following inspection of the root to verify its integrity.

The Gonon post removal system is less invasive than the Masserann Kit and the LGPP and requires less removal of tooth structure.11,38
Abutment teeth, 4
Acrylic resin provisional restorations, 84–85
Aluminum oxide, 79
Alveolar ridge, 123, 150–152
Amalgam cores, 48–50, 49f–50f
Amalgam restorations
 complete-crown restoration versus, 6
 discoloration caused by, 92
 mercury release from, after tooth bleaching, 101
Amelogenesis imperfecta, 93
Anchorage, 118
Ankylosis-related root resorption, 28f, 29, 140, 140f, 144
Anterior teeth. See also specific teeth.
 anchorage for, 118
 endodontically treated
 complete coronal coverage in, 7
 description of, 6–7
 restorations for, 8, 34–35
Antibiotics, 139
Apical lesions, 20
Apical perforations, 169, 173
Apical seal, 10, 63, 67
At-home extracoronal bleaching, 100, 102
Autotransplantation
 antibiotics use in, 139
 definition of, 137
 dietary considerations, 139
 examples of, 137–138, 138f
 general principles of, 139–141
 molars, 141f–142f, 141–143
 premolars, 143f, 143–144
 prognosis after, 140–141
 root resorption concerns, 139–140, 140f
Avulsed tooth, 138f, 144, 145f
Bacteria, 24f, 139
Balanced forces technique, 195
Base metal alloy, 36
Biologic width
 description of, 127, 169
 implant placement and, 124f
 orthodontic forced eruption and, 116, 124f
 surgical crown lengthening and, 108–109
 tooth fracture effects on, 111f
 treatment modalities for maintaining, 127–128
Bis-acryl composite resin, 85
Bite test, 24, 24f
Bleaching. See Tooth bleaching.
 Bond strength, extracoronal bleaching effects on, 101
Broken instruments
 illustration of, 196f
 prevalence of, 196
 removal of, 181, 196–199
Calcium hydroxide-containing sealer, 77–78
Canines, 12–13
Carbamide peroxide, 94–95
Carbon fiber–reinforced epoxy resin posts, 41–43, 41f–43f, 42t
Cast posts and cores. See Custom cast posts and cores.
Cement
 glass-ionomer, 76b, 76–77
 polyacrylic acid, 76
 post type and, 76b, 77
 properties of, 75, 76b–77b
 resin, 77, 79, 82–84
 resin-modified glass-ionomer, 77
 ultrasonic post removal affected by, 191
 zinc phosphate, 76, 76b
Cementation
 cast post and core, 80–82, 80f–82f
 ferrule effect on, 84
 fiber-reinforced resin post, 82–83, 83f
 intraradicular disinfection, 78, 78b
 objective of, 75
 post surface treatment, 79
 provisional restorations, 86–87
 radicular dentin, 78–79
 smear layer, 78
 techniques of, 78–84, 80f–83f
 voids created during, 79, 79f
CEREC inlays, 35
Cervical root resorption
 extracoronal tooth bleaching as cause of, 98–99
 invasive, 29f, 29–30
Cervical tooth structure, for ferrule, 68–69
Chairside extracoronal bleaching, 100
Combined endodontic-periodontal conditions, 26–27
Complete-crown restoration, 6
Complex amalgam restorations, 6
Composite resin cores, 51–52
Composite resin restorations
 discoloration caused by, 92
 endodontically treated teeth, 5–6
 fracture resistance of, 35
 provisional, 85
 time until failure with, 5–6
Computer-aided design/computer-assisted manufacture, 86
Cone beam computed tomography, 141
Core ferrules, 68
Cores. See Posts and cores.
Coronal teeth preparation, 66
Coronacoverage crowns
 anterior teeth, endodontically treated, 34
 posterior teeth, endodontically treated, 34
Cracked teeth, 22–26
Craze lines, 22–23, 23f, 70, 70f
Crestal perforations, 169, 171, 173, 174f
Crown
crown-root ratio, 116–117, 124
fracture of, 116
length of, post length correlation with, 62–63, 71
prothetic. See Prosthetic crown.
Crown lengthening, surgical. See Surgical crown lengthening.
Crown-root fractures
diagnosis of, 128
incidence of, 132
lines of, 128f
signs of, 128
subgingival, 128
Cuspal deflection, 7–8
Cuspal fracture odontalgia, 22
Custom cast posts and cores
alloys, 36–37
for posterior teeth with divergent roots, 40–41
surface treatment of, 79
zinc phosphate cementation of, 80–82, 80f–82f
cuspal deflection of, 7–8
flexibility of, 7
fracture of, 4–5
hardness of, 8
longevity of, 4
moisture content in, 7, 35
physical properties of, 7–8
posterior teeth. See Posterior teeth. posts and cores effect on, 36
prothetic crown, 201–205, 203f–204f
provisional restorations in, 87
proximal contact of, 4
shear strength of, 8
sound tooth structure, 14
survival rates for, 4, 20
time until failure, 5–6
toughness of, 8
treatment planning for. See Treatment planning.
vital teeth versus, 4
Epoxy resin posts
carbon fiber–reinforced, 41f–43f, 41–43
glass fiber–reinforced, 43f, 43–45, 44t, 45f
Extracoronal bleaching
at-home, 100, 102
chairside, 100
dental professionals’ role in, 101–102
gingival irritation secondary to, 101
immediate versus delayed removal of, 66–67, 67f
instrument for removal of, 67
removal of, 66–67, 67f
Extracoronal perforations, 169, 173
F
Ferrule effect
inadequate, 108f
intra-alveolar transplantation for improving, 132
restoration retention affected by, 68f, 68–69, 84
surgical crown lengthening consideration of, 109–110
Fiber posts
cementation of, 77, 82–83, 83f
description of, 14–15
removal of, 190f
self-adhesive resin cement for, 82–83, 83f
surface treatment of, 79
Fiberotomy, 122f
Files, 195
Fixed partial dentures
provisional, modification into matrix for amalgam core buildup, 49–50, 50f
survival rates for, 4–5
Flapless crown lengthening, 112
Force for forced eruption, 118, 119f
Fracture
root. See Root fracture.
tooth. See Tooth fractures.
Free radicals, 95, 100
Furcation perforations, 169, 173
G
Gates Glidden instruments, 11, 64
Gingival augmentation of, 123
excessive display of, 109f
irritation of, from tooth bleaching, 101
postrestorative recession of, 155f
ultrasonic vibration effects on, 192
Gingival connective tissue, 192
Glass fiber–reinforced epoxy resin posts, 43f, 43–45, 44f, 45f
Glass ionomer
core buildup material use of, 52
silver alloys added to, 52
resin-modified, 77
Gold alloy, 36
Goron post removal system, 183, 184f
Gutta-percha
apical seal and, 10, 63, 67
condensation of, 67f
immediate versus delayed removal of, 66–67, 67f
instruments for removal of, 67
removal of, 66–67, 67f

H
Hardness, 8
Hereditary hypophosphatemia, 93
H2O2. See Hydrogen peroxide.
Hydrogen peroxide, 94–96, 100–102
I
Idiopathic root resorption, 30, 30f
Immediate implant placement. See Osseointegrated implants, immediate placement of.
Implant
osseointegrated. See Osseointegrated implants.
placement of
biologic width considerations, 124
complications of, 159–160
in growing patients, 124, 125f
immediate, 123. See also Osseointegrated implants, immediate placement of.
 Improper, 160
nerve injuries during, 159–160
orthodontic extrusion effects on, 124
postextraction, 117, 118f
Incisors, 12–13
Index

Indirect fabrication, of custom cast posts and cores, 38–41
Indirect provisional restorations, 85–86
Infection-related root resorption, 27–28, 140, 140f
Infractions, 23–25
In-office extracoronal bleaching, 99f, 99–100
Instrument Removal System, 199
Instruments broken. See Broken instruments.
diameter of, root fracture and perforation risks, 11
intra-alveolar transplantation, 129
post space preparation using, 11, 64 rotary. See Rotary instruments.
Intentional replantation, 138, 138f, 176
Internal resorption, 28, 28f
Interproximal papillae, 124
Interdentin cracks, 182
Intentional replantation, 138, 138f, 176
Irreversible pulpitis, 20, 24
Intracoronal tooth bleaching, 96–99, 99f–99f
Intraradicular disinfection, 78, 78b
Intrapulpal hemorrhage, 92, 93f
Intraradicular disinfection, 78, 78b
Intrusive luxation, 132
Intrusive luxation, over, 132
Intra-alveolar transplantation advantages of, 125
advantages of, 125
application of, 118–121, 119f–120f
biologic width and, 116, 124f
biology of, 121–122
brackets and wires for, 118, 120
periodontal failure after, 116–117
crown fracture and, 116
esthetics of, 123
force, 118, 119f
goals of, 116–117
guidelines for, 120f
indications for, 116
maxillary incisors, 120f
mechanics of, 118–120, 119f–120f, 119f
modalities of, 119f
orthodontic considerations, 123
outcomes of, 117
periodontal considerations, 123, 123f
principles of, 118, 119f
progression of, 115–116
purpose of, 115
research considerations, 124–125
scope of, 123–125
summary of, 125
theories of, 122
Orthodontic tooth movement, 121, 123
Orthodontic wire, 39f
Orthopedic force, 118
Orthopedic implant site preservation or development, 123
Osseointegrated implants advantages of, 149
buccolingual positioning of, 157f
compliations of, 159–160
definition of, 154
dehiscence effects on, 158–159
factors that affect, 156–159
fenestration effects on, 158–159
indications for, 155–156
immediate placement of advantages of, 155
alveolar wall gap effects on, 158
contraindications for, 155–156
definition of, 154
defhescence effects on, 158–159
factors that affect, 156–159
fenestration effects on, 158–159
indications for, 155–156
periapical pathosis effects on, 159

L
Lasers, for crown lengthening, 112
Little Giant Post Puller, 183, 183f
Loosening of posts, 9–10, 15
Lost-wax technique, 36, 37f
Luting agents, 75–77. See also Cement.

M
Mandibular canines, 13–14
Mandibular fractures, 160
Mandibular incisors endodontically treated
with natural crowns, 36
post avoidance in, 14
root morphology of, 13
Mandibular molars
distal roots in, 71, 71f
endodontically treated
description of, 35
provisional crown as matrix for amalgam core buildup in, 50, 51f
first, 4, 13
infraction risks, 23
root morphology of, 13
second, 13
Mandibular premolars
infraction risks, 23
post placement in, 14
root morphology of, 13
Masserann Kit, 185–186, 186f
Masserann Micro Kit, 196
Maxillary canines, 12
Maxillary first molars
post diameter excess in, 65
root morphology of, 12–13
Maxillary first premolars
post placement in, 14
root morphology of, 12
Maxillary incisors endodontically treated
can, filling material in access cavity of, 48
with natural crowns, 35
forced eruption of, 120f
post placement in, 14
root morphology of, 12
Maxillary molars
infraction risks, 23
palatal roots in, 71, 71f
root morphology of, 12–13
second, 4, 13
Maxillary premolars
endodontically treated, 35
infraction risks, 23
root morphology of, 12
second, 12
Mercury, 101
Mesio-occlusal restorations, 6
Metal posts, 15
Mineral trioxide aggregate, 171–173, 172f
Moisture content, 7, 35
Molars
autotransplantation of, 137, 141f–142f, 141–143
fracture of, 4
infraction risks, 23
mandibular. See Mandibular molars.
maxillary. See Maxillary molars.
perforation of, 172f, 174f–175f
post and core placement in, 71
Mottled tooth, 93–94
MTAD, 78
Mucoperiosteal flap, 153
Multiple idiopathic root resorption, 30, 30f
N
Nickel-titanium files, 195–196
O
Occlusal forces, 6
Orthodontic extraction, 123
Orthodontic extrusion
crown-root ratio improvements through, 124
implant placement benefits, 124
intra-alveolar transplantation advantages over, 132
mechanical application guidelines for, 120, 121f
periodontal advantages of, 123
success factors, 116
Orthodontic forced eruption. See also
Orthodontic extrusion.
advantages of, 125
anchorage, 118
application of, 118–121, 119f–120f
biologic width and, 116, 124f
biology of, 121–122
brackets and wires for, 118, 120
coronal restoration goals of, 116–117
crown fracture and, 116
esthetics of, 123
force, 118, 119f
goals of, 116–117
guidelines for, 120f
indications for, 116
maxillary incisors, 120f
mechanics of, 118–120, 119f–120f, 119f
modalities of, 119f
orthodontic considerations, 123
outcomes of, 117
periodontal considerations, 123, 123f
principles of, 118, 119f
progression of, 115–116
purpose of, 115
research considerations, 124–125
scope of, 123–125
summary of, 125
theories of, 122
Orthodontic tooth movement, 121, 123
Orthodontic wire, 39f
Orthopedic force, 118
Orthopedic implant site preservation or development, 123
Osseointegrated implants advantages of, 149
buccolingual positioning of, 157f
compliations of, 159–160
definition of, 154
defhescence effects on, 158–159
factors that affect, 156–159
fenestration effects on, 158–159
indications for, 155–156
immediate placement of advantages of, 155
alveolar wall gap effects on, 158
contraindications for, 155–156
definition of, 154
defhescence effects on, 158–159
factors that affect, 156–159
fenestration effects on, 158–159
indications for, 155–156
periapical pathosis effects on, 159
Osseointegration, 152
Passive eruption, 108, 109f
Palatal canal, 71f
single-tooth mesiodistal positioning of, 157f
combined endodontic-periodontal classification of, 170, 170b
apical, 169, 173
immediate loading of, 154
immediate provisionalization, 153–154
indications for, 152
nonsubmerged technique, 153
scientific validation for, 154–155
size of, 170
signs and symptoms of, 168
root fracture and, differentiation of, 64
retrograde management of, 175f, 175–176
repair materials for, 171–172
pulpal floor, 168
prognostic factors for, 168–170, 170b
prevention of, 13–14, 170–171
post space preparation as cause of, 27f
post length excess as cause of, 62, 63f
orthograde management of, 172–175
post length excess as cause of, 62, 63f
post space preparation as cause of, 27f
premolar, 168f–169f, 173–174f
prevention of, 13–14, 170–171
prognostic factors for, 168–170, 170b, 170f
pulpal floor, 168
repair materials for, 171–172
retrograde management of, 175f, 175–176
risk factors for, 14
root fracture and, differentiation of, 64
signs and symptoms of, 168
size of, 170
subcrestal, 173–175, 174f
supracrestal, 169, 171, 173
-osseointegration, 152

P
Palatal canal, 71f
Passive eruption, 108, 109f
Perforations
apical, 169, 173
classification of, 170, 170b
combined endodontic-periodontal conditions caused by, 27
crestal, 169, 171, 173, 174f
definition of, 167
description of, 9
diagnosis of, 168–170
etiology of, 167
factors that affect, 10–13
furcation, 169, 173
hemorrhage at site of, 175
iatrogenic, 167
illustration of, 27f
instrument diameter and, 11
intentional replantation for, 176
location of, 169
management of, 172–176
mineral trioxide aggregate for, 171–173, 172f
molars, 172f, 174f–175f
orthograde management of, 172–175
post length excess as cause of, 62, 63f
post space preparation as cause of, 27f
premolar, 168f–169f, 173f–174f
prevention of, 13–14, 170–171
prognostic factors for, 168–170, 170b, 170f
pulpal floor, 168
repair materials for, 171–172
retrograde management of, 175f, 175–176
risk factors for, 14
root fracture and, differentiation of, 64
signs and symptoms of, 168
size of, 170
subcrestal, 173–175, 174f
supracrestal, 169, 171, 173
surgical management of, 175f, 175–176
amalgam cores under, 49
endodontic treatment of tooth with, 201–205, 203f–204f
posterior teeth, 34
retrofitting of post to, 207–211
sound tooth structure amount necessary for, 14
time until failure with, 5–6
Provisional fixed partial dentures, 49–50, 49f
Provisional restorations
Endodontically treated
See Pulpless teeth.
Pulpitis, 20, 21f, 24
Pulpal necrosis, 26f, 92, 93f, 128
Pulpal disease, 26, 26f
Pulp testing, 26
Pulp horns, 66
Pulp chamber, 66
Pulp, 20, 21f
Proximal contact, 4
Radicular dentin, 78–79
Radicular invaginations/grooves, 27
Replantation
antibiotics use in, 139
of avulsed tooth, 138, 138f, 144, 145f
dietary considerations, 139
extraction and, 145–147, 146f
general principles of, 139–141
intentional, 138, 138f, 176
prognosis after, 140–141
root resorption concerns, 139–140, 140f
Research, 124–125
Resin bonding, 78–79
Resin cement
description of, 77, 79
fiber-reinforced resin post cementation using, 82–83, 83f
indications for, 84
ultrasonic post removal affected by, 191
Resin-based sealer, 77–78
Resin-modified glassionomer cement, 77
Resorption
bone, 151
root. See Root resorption.
Restorations
amalgam. See Amalgam restorations.
anterior teeth, 8, 34–35
composite resin. See Composite resin restorations.
extracoronal bleaching effects on, 101
factors that affect anatomical and structural, 70–71
craze lines, 70, 70f
dentin thickness, 11, 70–71
ferrule effect, 68f, 68–69, 84
post diameter, 64, 65f
post length, 61–64, 62f–64f, 84
provisional restorations, 67–68, 68f
root canal preparation, 66–68
posterior teeth, 8, 34–35
provisional. See Provisional restorations. selection guidelines for, 8
retrofitting of post to existing crown, 207–211
Reversible pulpitis, 20, 21f, 24
Roots

crown/root ratio, 116–117, 124
curvature of, 71
perforation of. See Perforations. primary, 64
Root canal preparation, 66–68
Root canal space
instruments used to increase, 47
overenlargement of, 13
Root canal system
broken instruments in. See Broken instruments
description of, 22, 22f
smear layer created during cleaning and shaping of, 78
Root canal therapy. See also Endodontically treated teeth.
anatomical considerations, 21–22
factors that affect, 20
inadequately performed, 20f
outcomes of, 20
root canal preparation for, 21–22
survival rates for, 20
treatment planning for. See Treatment planning.
vertical root fractures versus, 25
Root fracture
factors that affect, 10–13
glass fiber–reinforced epoxy resin posts and, 44
instrument diameter and, 11
orthodontic extrusion contraindications, 124
post diameter and, 11, 65
post removal as cause of, 182
prevention of, 13–14
residual dentin thickness effects on, 11
root perforation and, differentiation of, 64
threaded posts as risk factor for, 10
vertical, 25–26, 26f
Root morphology
mandibular, 13
maxillary, 12–13
Root perforations. See Perforations.
Root resorption, 27–30, 139–140, 140f, 144–145
Root surface conditioning agents, 176
Rotary instruments
broken, 199f. See also Broken instruments. description of, 66
post removal using, 188–190, 189f–191f
S
Sealers
immediate versus delayed removal of, 67
post retention affected by, 77–78
Setting shrinkage, 51–52
Shear strength, 8
Shrinkage, 51–52
Silver alloys, added to glass ionomer, 52
Silver-palladium alloy, 36
Single-tooth implants
contraindications, 152
description of, 149–150
in healed sites, 152–154, 153f–154f
immediate loading of, 154
immediate provisionalization, 153–154
indications for, 152
nonsubmerged technique, 153
scientific validation for, 152
submerged technique, 153
Smear layer, 78
Sodium hypochlorite, 78
Sodium perborate, 94
Soft tissue crown lengthening, 110
Sound tooth structure, 14
S.S. White Post Extractor, 183
Structural tooth defects, 93–94
Subcrestal perforations, 173–175, 174f
Subgingival fractures, 4, 128
Supracrestal perforations, 169, 171, 173
Surgical crown lengthening
in anterior areas, 108, 109f
biologic width considerations, 108–109
description of, 69, 107
esthetic concerns, 108, 109f, 112
factors that affect, 110
ferrule considerations, 109–110
flapless, 112
functional, 107
indications for, 107, 110, 111f
lasers for, 112
provisional restorations used with, 111
recommendations for, 112–113
restorative procedures after, 111
soft tissue, 110
in subgingival preparation margins, 110, 111f
technique of, 110–112, 111f
Survival rates
endodontically treated teeth, 4
fixed partial dentures, 4–5
Index
Index

T
Tetracycline-related tooth stains, 92–93, 93f
Tetragonal zirconium polycrystals, 46
Thermocatalytic method, for intracoronal tooth bleaching, 98
Threaded posts, 9–10
Tissue engineering, 123
Tooth aplasia
autotransplantation for. See Autotransplantation.
description of, 137
Tooth avulsion, 138f
Tooth bleaching
 carbamide peroxide for, 94–95
definition of, 93
extracoronal. See Extracoronal bleaching.
history of, 94
hydrogen peroxide for, 94–96, 100–102
intracoronal, 96–99, 97f–99f
outcome of, 101–102
over-the-counter products for, 94, 100
peroxides for, 94–96
residual oxygen produced during, 99
sodium perborate for, 94
summary of, 102
Tooth discoloration
aging-related, 92
calcific metamorphosis, 92
diseases that cause, 93
extrinsic causes of, 92
intrapulpal hemorrhage, 92, 93f
intrinsinc causes of, 92–94
pulpal necrosis, 92, 93f
structural tooth defects that cause, 93–94
tetracycline-related, 92–93, 93f
Tooth eruption
forced. See Orthodontic forced eruption.
normal process of, 121
Tooth extraction
events after, 150–151
healing after, 150f
implant replacement after, 117, 118f
orthodontic, 123
replantation and, 145–147, 146f
resorption after, 151
ridge preservation after, 150–152
socket defects, 158–159, 159f
for vertical root fracture, 25–26
Tooth fractures
biologic width affected by, 111f
in endodontically treated teeth, 4–5
post removal as cause of, 182
types of, 22–26
Tooth loss
causes of, 5, 137
data analysis of, 5
fracture-related, 5
Tooth movement, orthodontic, 121, 123
Tooth sensitivity, 100–101
Tooth stains, 92–94
Tooth stiffness, 35
Tooth structure loss, 116
Tooth whitening, 93. See also Tooth bleaching.
Toughness, 8
Transplantation. See Autotransplantation;
Intra-alveolar transplantation;
Replantation.
Transportation of the canal, 22
Trauma-related root resorption, 27
Treatment planning
combined endodontic-periodontal problems, 26–27
cracked teeth, 22–26
enamel craze lines, 22–23, 23f
infractions, 23–25
pulpal status assessments, 20, 21f
purpose of, 3
tooth fractures, 22–26
vertical root fractures, 25–26, 26f
U
Ultrasonic devices, for post removal, 190–192
Ultrasonic tips, 198–199
Ultraviolet photo-oxidation technique, for intracoronal tooth bleaching, 98
Urea hydrogen peroxide, 94
Urethane dimethacrylate, 85
V
Vertical root fractures, 25–26, 26f
Vital teeth, endodontically treated teeth versus, 4
W
Walking bleach, 96–98, 97f
Y
Yttrium-stabilized tetragonal polycrystalline zirconia, 46
Z
Zinc oxide–eugenol-based sealer, 77–78
Zinc phosphate cement
cast post and core cementation using, 80–82, 80f–82f
description of, 76, 76b
provisional restoration cementation using, 87
ultrasonic post removal affected by, 191
Zirconia posts, 46f, 46–47