## Contents

- Foreword by J. Daniel Subtelny vii
- Preface and Acknowledgments viii–ix
- Introduction x

### Part I  Clinical and Biologic Principles of Early-Age Orthodontic Treatment 1

1. Rationale for Early-Age Orthodontic Treatment 3
2. Development of the Dentition and Dental Occlusion 15
3. Examination, Early Detection, and Treatment Planning 41

### Part II  Early-Age Orthodontic Treatment of Nonskeletal Problems 71

4. Space Management in the Transitional Dentition 73
5. Management of Incisor Crowding 105
6. Management of Deleterious Oral Habits 131
7. Orthodontic Management of Hypodontia 157
8. Orthodontic Management of Supernumerary Teeth 189
9. Diagnosis and Management of Abnormal Frenum Attachments 205
10. Early Detection and Treatment of Eruption Problems 225
Part III  Early-Age Orthodontic Treatment of Dentoskeletal Problems  291

11  Management of Sagittal Problems (Class II and Class III Malocclusions)  293

12  Management of Transverse Problems (Posterior Crossbites)  355

13  Management of Vertical Problems (Open Bites and Deep Bites)  377

Index  417
This book is a compendium of significant and pertinent information related to early-age orthodontic treatment, a subject that seems to have evolved into one of considerable controversy, with as many orthodontists expressing a negative reaction as a positive reaction to its benefits. Dr Bahreman is a believer in early-age orthodontic treatment, and he expresses some cogent arguments founded in years of experience in practice and teaching to back up his beliefs. In developing his treatise, Dr Bahreman outlines the development of the occlusion and/or malocclusion from the embryonic stages, when the foundation of the jaws and thereby the position of the dentition is first established.

Early-age orthodontics is not about the time it takes to orthodontically treat a problem; it is a story of growth, of variation in anatomy, and of muscle function and influences, a realization that it is the jaws that contain the teeth and that where the jaws go, the teeth will have to go, and both undergo varying influences as well as grow in varying directions. Early-age orthodontics necessitates recognition of this process and aims to alter and redirect it whenever feasible and possible. Dr Bahreman has undertaken a monumental effort in directing efforts along this path. An extensive exploration of the literature is an added bonus, as the mechanical approaches are based on this literature. In fact, the extensive review of the literature and its application to diagnosis and varying forms of therapy are worth a veritable fortune.

You may or may not agree with the basic premises, but you will have access to important information that will widen your scope of vision and thereby widen your treatment horizons. To my mind, an ounce of prevention, if possible, is worth a pound of cure. The reality of prevention can exist at the earliest stages of development.

J. Daniel Subtelny, DDS, MS, DDSc(Hon)
Professor Emeritus
Interim Chair and Director of Orthodontic Program
Eastman Institute for Oral Health
University of Rochester
Rochester, New York
Preface

After obtaining a master’s degree in orthodontics in 1967, I began my career at a newly founded dental school in Tehran. My responsibilities included teaching and administrative duties at the university and maintenance of a very busy private practice. In addition, I established both the orthodontic and pediatric dentistry departments at the university.

Many patients were being referred to the orthodontic department, and there were no qualified faculty members to help me provide care. To rectify the situation, I designed an advanced level, comprehensive curriculum in orthodontics for undergraduate students, including classroom instruction, laboratory research, and clinical demonstrations. Once the students completed the course, they could work in the clinic, thus temporarily solving the issue of the heavy patient load in the orthodontic clinic. With additional staff now available, I could select patients, mostly children in the primary or mixed dentition, for some interceptive treatment.

Despite my difficulties in performing all of the aforementioned duties, this situation had a fortunate outcome. It helped me to understand and discover the advantages of early-age orthodontic treatment, which was not common in those years. During my more than 40 years of practice and teaching, especially in early orthodontic treatment, I have accumulated a considerable amount of educational data for teaching purposes. I would like to share this experience and information with readers.

The public’s growing awareness of and desire for dental services, especially at an early age, have encouraged our profession to treat children earlier. Despite the recommendation by the American Association of Orthodontists that orthodontic screening begin by the time a child is 7 years old, many orthodontists still do not treat children prior to the complete eruption of the permanent teeth. I believe that this inconsistency is due to the educational background of orthodontists as well as a lack of familiarity with recent technical advancements and the various treatment options that are available for young patients.

The therapeutic devices available for this endeavor are not complex, but deciding which ones to use and when to employ them are important steps. As we make these decisions, we should also remember not to treat the symptom but rather to treat the cause. My goal is to present the basic information necessary to understand the problems, to differentiate among various conditions, and to review different treatment options. Case reports are examined to facilitate clinical application of the theory in a rational way.

To understand the morphogenesis of nonskeletal and skeletal occlusal problems, to detect problems early, and to intervene properly, we must look at all areas of occlusal development, including prenatal, neonatal, and postnatal changes of the dentoskeletal system, and explore all genetic and environmental factors that can affect occlusion at different stages of development. In other words, we must have a profound understanding of the fundamental basis and morphogenesis of each problem and then apply this knowledge to clinical practice. Thus, the goals of this book are:

- To provide a comprehensive overview of all areas of dental development, from tooth formation to permanent occlusion, to refresh the reader’s memory of the fundamentals necessary for diagnosis and treatment planning.
- To emphasize all the important points of the developmental stages that must be recognized during examination of the patient to facilitate differential diagnosis. Each tooth can become anomalous in a number of ways and to different degrees. Occlusion and maxillomandibular relationships can vary in the sagittal, transverse, and vertical directions.
- To discuss the application of basic knowledge to practice by presenting several cases with different problems and different treatment options.
- To demonstrate the benefits of early-age orthodontic treatment, achieved by intervention in developing malocclusion and guidance of eruption.

Materials are presented in three parts: In Part I, “Clinical and Biologic Principles of Early-Age Orthodontic Treatment,” three chapters introduce and explain the concept of early-age treatment, describe its necessity and advantages, and discuss the controversies surrounding this topic; discuss the basic foundation of occlusal development, empowering the practitioner to detect anomalies and intervene as necessary; and illustrate the procedures, tools, and techniques available for diagnosis, emphasizing differential diagnosis and treatment planning for early-age treatment.

Part II, “Early-Age Orthodontic Treatment of Nonskeletal Problems,” consists of seven chapters describing the nonskeletal problems that might develop during the primary and mixed dentitions. The chapters explain the ontogeny, diagnosis, and early detection of, and intervention for, these problems. Topics include space management, crowding, abnormal oral habits, abnormal frenum attachment, hypodontia, supernumerary teeth, and abnormal eruption problems.
Part III, “Early-Age Orthodontic Treatment of Dentoskeletal Problems,” consists of three chapters on early intervention for the dentoskeletal problems that might arise during the primary and mixed dentitions in the three dimensions: sagittal problems (anterior crossbite and Class II and Class III malocclusions); transverse problems (posterior crossbites); and vertical problems (open bites and deep bites).

This book will provide the reader with a firm foundation of the basic science and case examples with various treatment options. It is my hope that the information provided will promote a better understanding of abnormalities and their causes and enable readers to recognize the clues for early detection and intervention.

Acknowledgments

First and foremost, I would like to gratefully acknowledge the valuable opportunity that was afforded me as a student in Dr Daniel Subtelny’s orthodontic program. Between 1964 and 1967, I completed both my orthodontic specialty and master degree programs with Dr Subtelny as my mentor. As chairman and program director, researcher, and mentor, Dr Subtelny has dedicated over 57 years of his life to teaching, personally influencing the lives of over 350 students from around the world, myself included. In 1999, after over 32 years of teaching, practicing, and administrating in Tehran, I was fortunate enough to return to the Eastman Institute for Oral Health to work alongside Dr Subtelny as a faculty member in the Orthodontic and Pediatric Dentistry Programs.

In addition to Dr Subtelny, there are several individuals to whom I would like to express my deep gratitude for their help and encouragement in preparation of this book: the late Dr Estepan Alexanian, head of the Department of Histology at the Shahid Beheshti University Dental School in Tehran, whose dedication as an educator and preparation of superb histologic slides is remarkable and who allowed me to use his slides in my publication; Mr Aryan Salimi for scanning some of the slides and radiographs in this book; and Ms Elizabeth Kettle, Program Chair of the Dental Section of the Medical Library Association, head of Eastman’s library, for her sincere help in editing this publication.

Finally, I wish to acknowledge the constant support of my family: Malahat, Nasreen, Saeid, Alireza, Tannaz, and Peymann Motevalei. Especially high gratitude goes to my wife, Malahat, for her tolerance, support, and encouragement. I also want to thank my son Alireza for his technical help and guidance in computer skills and my granddaughter Tannaz Motevalei for drawing some of the illustrations.

This publication is the product of 17 years spent organizing materials derived from my 45 years of practice and teaching as well as reviewing hundreds of articles and books. I herewith dedicate this book to the teachers, practitioners, residents, and students who are dedicated to treating malocclusion earlier in children, before it becomes more complicated and costly.
Occlusal development is a long process starting around the sixth week of intrauterine life and concluding around the age of 20 years. This long developmental process is a sequence of events that occur in an orderly and timely fashion under the control of genetic and environmental factors. Dental occlusion is an integral part of craniofacial structure and coordination of skeletal growth changes. Occlusal development is essential for establishing a normal and harmonious arrangement of the occlusal system.

As we learn about craniofacial growth changes, the potential influences of function on the developing dentition, and the relationships of basal jawbones and head structure, we acquire a better understanding of when and how to intervene in the treatment guidance for each patient. It is more effective to intervene during the primary or mixed dentition period to reduce or, in some instances, avoid the need for multibanded mechanotherapy at a later age.

Untreated malocclusions can result in a variety of problems, including susceptibility to dental caries, periodontal disease, bone loss, temporomandibular disorders, and undesirable craniofacial growth changes. Moreover, the child’s appearance may be harmed, which can be a social handicap. The benefits of improving a child’s appearance at an early age should not be undervalued. The goals of many clinicians who provide early treatment are not only to reduce the time and complexity of comprehensive fixed appliance therapy but also to eliminate or reduce the damage to the dentition and supporting structures that can result from tooth irregularity at a later age. In short, early intervention of skeletal and dental malocclusions during the primary and mixed dentition stages can enable the greatest possible control over growth changes and occlusal development, improving the function, esthetics, and psychologic well-being of children.

For many decades, orthodontists have debated about the best age for children to start orthodontic treatment. While we agree on the results of high-quality orthodontic treatment, we often differ in our opinions as to how and when to treat the patient. Some practitioners contend that starting treatment in the primary dentition is the most effective means of orthodontic care. Others prefer to begin the treatment in the mixed dentition. There is also controversy about whether the early, middle, or late mixed dentition is preferable.

Despite the fact that the American Association of Orthodontists recommends that orthodontic screening be started by the age of 7 years, many orthodontists do not treat children prior to the eruption of permanent teeth, and some postpone the treatment until the full permanent dentition has erupted, at approximately 12 years. The controversy surrounding early versus late treatment is often confusing to the dental community; therefore, clinicians must decide on a case-by-case basis when to provide orthodontic treatment. Indeed, there are occasions when delaying treatment until a later age may be advisable.

The long-term benefits of early treatment are also controversial. The majority of debates seem to revolve around early or late treatment of Class II malocclusions. There is less controversy regarding many other services that can be performed for the benefit of young patients during the primary or mixed dentition, such as treatment of anterior and posterior crossbite, habit control, elimination of crowding, space management, and management of eruption problems.

Practitioners who are in favor of early treatment of Class II problems contend that early intervention is the best choice for growth modification when the problem is skeletal and especially when it results from mandibular retrusion. On the other hand, opponents believe that there is no difference in the final result and that a single-phase treatment approach is preferable because of the advantages that accompany the reduced treatment time.

Unfortunately, some practitioners, without a profound evaluation of the indications for early treatment, conclude that late treatment is always preferable. However, broad conclusions drawn from narrowly focused research can be misleading. One cannot conclude that no birds can fly by considering the flight characteristics of the ostrich.

To evaluate and demonstrate the benefits of early treatment, I aim to discuss and clarify available treatments and services and discuss cases with different problems and different treatment options. An understanding of all aspects of early treatment requires a thorough knowledge of the basics of embryology, physiology, and growth and development. This includes development of the dentition, tooth formation, eruption, exfoliation, and all transitional changes. Therefore, my other goal is to integrate the basic science and the clinical, in order to refresh the reader’s memory on important points about the bases of nonskeletal and skeletal problems that can arise during the transitional stages of occlusion.

Each patient who enters our practice represents a new chapter and a new lesson that we can learn from. A thorough knowledge of the basis for early-age orthodontic treatment, an understanding of the proper treatment techniques, and a willingness to consider their appropriateness for each individual patient will allow us to intervene in ways that will provide the maximum benefit for a young and growing child.
CLINICAL AND BIOLOGIC PRINCIPLES OF EARLY-AGE ORTHODONTIC TREATMENT
In the past, orthodontic treatment has been focused mainly on juvenile and adult treatment. Treatment options for patients in these age groups often are limited by complex dental and orthodontic problems and the lack of sufficient future craniofacial growth.

During the later part of the 18th century, orthodontic treatment of Class II malocclusion was limited primarily to retraction of the maxillary anterior teeth to decrease excessive overjet. In 1880, Norman Kingsley published a description of techniques for addressing protrusion. He was among the first to use extraoral force to retract the maxillary anterior teeth after extraction of the maxillary first premolars; the extraoral force was applied with headgear. Later, Case continued to refine these methods.

Angle's classification of malocclusion, published in the 1890s, provided a simple definition of normal occlusion and was an important step in the development of orthodontic treatment. Angle opposed the extraction of teeth and favored the preservation of the full dentition. His position against tooth extraction led him to depend on extraoral force for the expansion of crowded dental arches and retraction of the anterior segment. Later he discontinued the use of extraoral force and advocated the use of intraoral elastics to treat sagittal jaw discrepancies.

Because of Angle's dominating belief that treatment with Class II elastics was just as effective as extraoral force, the use of headgear was abandoned by the 1920s. Then, in 1936, Oppenheim reintroduced the concept of extraoral anchorage, employing extraoral traction to treat maxillary protrusion. Accepting the position of the mandible in Class II malocclusions, Oppenheim attempted to move the maxillary dentition distally by employing a combination of occipital anchorage and an E-arch, allowing the mandible to continue its growth. This resulted in an improved relationship with the opposing jaw. In 1947, Silas Kloehn reintroduced extraoral force, in the form of cervical headgear, for the treatment of skeletal Class II relationships.

In 1944, another student of Angle's, Charles Tweed, was discouraged by the prevalence of relapse in many of his patients treated without extraction, so he decided to oppose the conventional wisdom of nonextraction.

In the early part of the 20th century, there was optimism about the influence of orthopedic force on skeletal growth. An almost universal belief was that orthodontic forces, if applied to the growing face, could alter the morphologic outcome. In the United States, headgear was the principal appliance used for facial orthopedic treatment, whereas in Europe the functional appliance was predominantly used.

In 1941, Alan Brodie, one of Angle's students, concluded that the growing face could not be significantly altered from its genetically predetermined form and that the only option for the orthodontist in cases of skeletal malocclusion would be dental camouflage, or the movement of teeth within their jaws. This idea led to tooth extraction.
Panoramic radiographs

The panoramic radiograph is a common diagnostic tool in today’s dental practice. It is a kind of radiograph that provides a full picture of the dentition and the complete maxilla and mandible.

Panoramic radiographs do not show the fine detail captured on intraoral radiographs and are not as specific as other intraoral radiographs, but in a single radiograph it provides a useful general view of all dentition, the maxilla and mandible, the sinuses, and both TMJs. This type of radiograph is very useful, especially during the mixed dentition, for early detection and prevention of all problems disturbing the normal development of occlusion.

Especially during the mixed dentition as a diagnostic tool for early-age orthodontic treatment, the following are important aspects that should be carefully evaluated on a panoramic radiograph before any orthodontic treatment:

- Position and pattern of fully emerged as well as emerging permanent teeth
- Sequence of permanent tooth eruption
- Asymmetric eruption
- Comparison of crown height levels on the left and right sides
- Obstacles preventing eruption
- Abnormal tooth malformations (gemination, fusion, dens in dente, or dilaceration)
- Exfoliation and pattern of primary teeth root resorption
- Tooth number and supernumerary teeth or congenitally missing teeth
- Eruption problems, such as impaction, ectopic, transposition, or ankylosis
- Bone density and trabeculation
- Cysts, odontomas, tumors, and other bone defects or pathologic lesions
- Third and second molar positions, inclinations, and relationships to the first molars and ramus edge
- Shape of the condylar head and ramus height
- Comparison of the left and right condylar heads and rami

The characteristics and management of these problems are discussed in their related chapters in part 2 of this book.

Chapter 10 introduces a simple and practical technique for application of panoramic radiographs to assess canine impaction.

Longitudinal Panoramic Radiograph Monitoring

Over many years of teaching and practice, in both pediatric dentistry and orthodontic departments, the author became interested in conducting a retrospective evaluation of patients who were referred for some type of orthodontic problem and who had previous panoramic radiographs available. This retrospective evaluation led to the conclusion that the longitudinal monitoring of panoramic radiographs during the mixed dentition is a very valuable, easy technique that enables detection of developmental anomalies during the transitional dentition. Today the author strongly recommends this easy and very useful technique to all practitioners, especially pediatric dentists and orthodontists.

The transitional dentition is one of the most critical stages of the dentition, and many eruption problems, whether hereditary or environmental, emerge during this stage. Longitudinal panoramic radiograph monitoring is a careful serial monitoring technique that any practitioner can perform for young patients during transitional dentition to watch for developmental anomalies that may arise at these ages.

The technique the author recommends is to take one panoramic radiograph when the patient is around the age of 6 years (during the eruption of the permanent first molar) and then two more panoramic radiographs at 8 and 10 years of age. Careful comparison of two or three consecutive radiographs of a patient at this stage of the dentition can easily reveal any abnormal developmental processes emerging between radiographs and therefore can enable early detection and intervention. The following three cases illustrate the advantages of longitudinal monitoring of panoramic radiographs and proper intervention.
Case 3-1

This case confirms the importance of longitudinal radiographic evaluation, indicating how early intervention could have helped this little girl. Figures 3-23a to 3-23c are three consecutive radiographs found in her record. A periapical radiograph reveals the first sign of a problem, that is, asymmetric eruption of the central incisors at age 7 years. A panoramic radiograph taken about 15 months later shows the eruption of both central incisors and the asymmetric position of the lateral incisors. A third radiograph, a panoramic radiograph taken about 7 months later, reveals that the left lateral incisor had erupted while the right lateral incisor remained unerupted.

The important, detectable abnormal sign in this radiograph is the abnormal position of the maxillary permanent right canine in relation to the unerupted lateral incisor; unfortunately, no intervention was performed at this point, and the patient did not return until 3 years later. Figures 3-23d and 3-23e present the last panoramic and occlusal views, showing the complete resorption of the permanent lateral incisor root.

Possible intervention:
Assessment of the available serial radiographs indicates that the best treatment option was early intervention and extraction of the maxillary primary right canine when the first (see Fig 3-23b), or even the second (see Fig 3-23c), panoramic radiograph was taken. Extraction of the maxillary primary right canine would have facilitated and accelerated eruption of the permanent lateral incisor, moving this tooth away from the canine forces and preventing root resorption (see Figs 3-23d and 3-23e).

Fig 3-23  (a) Periapical radiograph showing asymmetric eruption of the maxillary central incisors.  (b) Panoramic radiograph taken about 15 months later, showing the eruption of both central incisors and the asymmetric position of the lateral incisors.  (c) Panoramic radiograph taken 7 months after the first panoramic radiograph, revealing that the right lateral incisor remains unerupted. Panoramic (d) and occlusal (e) radiographs taken 3 years later. In the absence of treatment, the permanent lateral incisor has undergone complete root resorption.
This type of unilateral regainer is recommended in cases where the force is to be directed only to the molar in the maxillary dentition.

**Sliding loop and lingual arch.** This appliance is designed similarly to the sliding loop regainer, but it includes a lingual holding arch connected to the opposite molar band to provide anchorage and prevent adverse effects on the anterior component (Fig 4-21).

**Pendulum appliance (molar distalizer).** The pendulum appliance is a fixed bilateral or unilateral molar distalizer. It is designed with two bands cemented to the primary first molars or the premolars and an acrylic resin button touching the palate to provide good anchorage. One end of a β-titanium spring is embedded in acrylic and the other end is inserted in the palatal tube, making the spring removable (Fig 4-22). The appliance can be activated at each appointment. This type of distalizer is indicated for the permanent dentition, in cases of space loss or Class II molar correction.

**Distal jet appliance.** The distal jet appliance is also a fixed unilateral or bilateral distalizer with an acrylic resin button for anchorage. Bands are cemented to the anterior abutment, and two bars with open coil spring slide to embedded tubes for activation. The bars connected to the molar palatal tube can be removed, and the push coil can be reactivated (Fig 4-23).

**2 × 4 bonding.** Molar distalization and space regaining can be achieved as a part of 2 × 4 bonding in patients who need
incisor alignment (such as space closure, crossbite correction, or midline shift) during the early or middle mixed dentition. A light force can be applied to molars by a push coil inserted between lased incisors and the permanent molar tube (Fig 4-24).

**Sectional bracketing.** In patients with normal occlusion and space loss in one quadrant, minor tooth movement and space regaining can be achieved by sectional bracketing. Figure 4-25 shows a patient with a good Class I mandibular and maxillary left dentition. The problem is space loss at the maxillary right second premolar site that has resulted from mesial tipping of the molar and distal tipping of the first premolar. Sectional bracketing of this segment, leveling with a sectional archwire, and placement of a push coil between the tipped molar and premolar can open space and upright the adjacent teeth.

**Removable space regainers**

Removable appliances can also be used for space regaining as well as space maintenance. This can be accomplished by incorporating different springs or screws in the appliance, either unilaterally or bilaterally. A Hawley appliance with different modifications is a simple, effective appliance that can be used for all of these purposes (Fig 4-26).
Orthodontic Management of Supernumerary Teeth

Early Recognition and Clinical Signs of Hyperdontia

Development of supernumerary teeth can occur any time during the primary dentition, mixed dentition, and the permanent dentition. They are almost always harmful to adjacent teeth and to the occlusion. Most cases of supernumerary teeth are asymptomatic and are usually found during routine clinical or radiologic investigations. Therefore, early recognition of and treatment planning for supernumerary teeth are important components of the preliminary assessment of a child’s occlusal status and oral health, which is based on careful clinical and paraclinical examinations.

Clinical examination

Clinical examination of children during the primary or mixed dentition is discussed in detail in chapter 3. When assessing supernumerary teeth in the developing occlusion of a child, the clinician must consider the number, size, and form of teeth, the eruption time, the sequence of eruption, the position of each tooth, and local and general factors that can affect occlusion during transitional changes. The following are clinical signs of the presence of supernumerary teeth:

- Abnormal pattern and abnormal sequence of eruption
- Delayed eruption
- Absence of eruption
Case 9-2

A 10-year, 8-month-old girl exhibited a Class II division 1 malocclusion and maxillary and mandibular incisor protrusion. In addition, an invasive frenum attachment caused severe maxillary incisor crowding, displacement, and cystic formation (Figs 9-19a to 9-19e).

Treatment:
The treatment plan included removal of the frenum, the cyst, and all abnormal soft tissue attachment and extraction of the four first premolars, carried out as a serial step-by-step extraction.

After the surgical procedure and tissue healing, a removable maxillary Hawley appliance was inserted to achieve slow, minor incisor alignment, and use of a lower holding arch for about 1 year was followed by step 1 of the extraction series: removal of the maxillary primary canines, both maxillary primary first molars, and both mandibular primary first molars. Figure 9-19f shows alignment of the maxillary incisors and the canine bulges before serial extraction.

Step 2 was extraction of all four first premolars. Maxillary anchorage was prepared with a Nance appliance, and the lower holding arch was removed as reciprocal anchorage.

Step 3 of the extraction sequence was removal of the remaining primary second molars. This was followed by maxillary and mandibular bonding to start maxillary canine retraction. Then mandibular and later anterior retraction and space closure were accomplished. Some mesial movement of the mandibular molars was allowed, in order to achieve a Class I molar relationship (Figs 9-19g to 9-19k).

Fig 9-19 Treatment of a 10-year, 8-month-old girl with a Class II division 1 malocclusion and maxillary and mandibular protrusion. An invasive frenum attachment has caused tooth displacement, maxillary incisor crowding, and formation of a cyst. (a to c) Pretreatment occlusion. (d) Pretreatment panoramic radiograph. (e) Pretreatment cephalometric radiograph. (f) Tissue healing and some incisor alignment. The arrows show canine bulge. (g to i) Posttreatment occlusion. (j) Posttreatment panoramic radiograph. (k) Posttreatment cephalometric radiograph.
Early Detection and Treatment of Eruption Problems

TOOTH TRANSPPOSITION

Another kind of eruption disturbance is tooth transposition, or positional interchange of two adjacent teeth, especially their roots. Tooth transposition is a rare but clinically difficult developmental anomaly. Depending on the transposed teeth and their position, normal eruption of adjacent teeth can be affected, root anatomy can be damaged, and eruption of the affected teeth can be delayed. This eruption disturbance was first defined in 1849 by Harris, who described tooth transposition as an “aberration in the position of the teeth.”

Transposed teeth are classified into two types of tooth displacement: complete transposition and incomplete transposition (Fig 10-19). In complete transposition, both the crowns and the entire root structures of the involved teeth are displaced to abnormal positions. In incomplete transposition, only the crown of the involved tooth is transposed, and the root apices remain in place.

Transposition is sometimes accompanied by other dental anomalies, such as peg-shaped lateral incisors, congenitally missing teeth, crowding, overretained primary teeth, dilacerations, and rotation of adjacent teeth.

Displacement of one tooth from one quadrant across the midline to the other side of the arch has very rarely been reported, but according to Shapira and Kuftinec these types of anomalies should be considered ectopically erupted teeth, not transposed teeth.

Fig 10-18 Management of an ectopic maxillary canine that has caused resorption of the permanent central incisor root and subsequent exfoliation. (a to c) Pretreatment occlusion. (d) Pretreatment panoramic radiograph. (e to h) Occlusion during active treatment and leveling. The canine bracket has a higher K distance to achieve elongation. (i to l) Posttreatment occlusion, after end of active treatment and reshaping of the canine to mimic the central incisor. 1—permanent central incisor; 2—permanent lateral incisor; 3—permanent canine; C—primary canine.
Case 11-9: Anterior dental crossbite

A 10-year-old girl in the middle mixed dentition presented with a Class III molar relationship on the right side because of space loss, 0- to 1-mm overbite and overjet, and three maxillary incisors in crossbite. Treatment had been delayed, causing severe crowding of the mandibular incisors and ectopic eruption of the mandibular right lateral incisor (Figs 11-18a to 11-18f).

Treatment:
Because of the severe crowding and displacement of incisors, the treatment plan incorporated fixed appliances with maxillary and mandibular 2 × 6 bonding. The first step in treatment was 2 × 4 maxillary bonding, mandibular first molar occlusal bonding to disocclude the anterior segment, and placement of 0.016-inch nickel-titanium maxillary arches (cinched back) for leveling and release of abnormal anterior contact. The second step was placement of 0.016-inch stainless steel maxillary arches with an open U-loop mesial to the molar tube (extended arch length) to procline the maxillary incisors out of crossbite. The third step was mandibular 2 × 4 bonding: first with 0.014-inch nickel-titanium archwire because of severe crowding and later with 0.016-inch nickel-titanium archwire for further leveling.

The fourth step was use of an open U-loop to place an extended-length stainless steel archwire against the mandibular molar tube to achieve minor mandibular incisor proclination in order to gain space and align the mandibular incisors. The final step was bonding the permanent canines after eruption for final anterior alignment. Figures 11-18g to 11-18k show the treatment outcome.

Fig 11-18 Management of incisor crossbite in a 10-year-old girl. The locked occlusion has resulted in severe displacement and crowding of the mandibular incisors as well as ectopic eruption of the mandibular right central incisor. (a to e) Pretreatment occlusion. (f) Pretreatment panoramic radiograph. (g to j) Posttreatment occlusion. (k) Posttreatment panoramic radiograph.
Index

A
Acellular cementum, 23
Achondroplasia, 230
Acrodyopia, 236
Active holding arch, 82, 83f
Active lingual arch, 92
Adenoid facial type, 146
Age of patient
midline diastema and, 210
for orthodontic screening, 7
serial extraction considerations, 117
space loss affected by, 76
Agranulocytosis, 236
Alginate, 51
Alkaline phosphatase, 20, 235
Allergies
hypodontia and, 162
mouth breathing and, 147
Alveolar bone, 24
Alveolar process
development of, 225
function of, 26
growth of, 26
maxilla and mandible relationship to, 37
Alveolar ridge, 233
Ameloblasts, 18, 19f, 20
Amelogenesis, 20
Amelogenesis imperfecta, 19
Amelogenin, 21
Anchored space regainers, 87–89, 88f
Angle’s classification of malocclusion, 3, 150
Ankyloglossia, 215f, 215–216
Ankylosis
case studies of, 285f–286f
definition of, 281
dentition effects of, 282, 282f–283f
diagnosis of, 283
etiology of, 281–282
lateral tongue thrust and, 141
management of, 283–284
permanent teeth, 31
prevalence of, 281
primary teeth, 31, 165, 281
treatment of, 283–284
Anodontia, 158
Anterior Bolton discrepancy, 209
Anterior crossbite
case studies of, 320f–322f
cephalometric evaluation of, 316
Class III malocclusion and, 316
clinical examination of, 316
differential diagnosis of, 316
Hawley appliance for, 319
illustration of, 49f, 257f
incisor, 317, 318f, 321f
maxillary canine impaction and, 257f
in mixed dentition, 321f
simple
definition of, 316
etiologic of, 317, 318f
incidence of, 316
signs of, 317
single-incisor, 320f
treatment of, 319, 347f–351f
Anterior open bite
anterotongue thrust and, 142
illustration of, 49f
lisping caused by, 50
thumb sucking as cause of, 133, 134f
Anterior provisional partial denture, 84–85, 85f
Anterior teeth
early loss of, 84
protrusion of, 90
Anterior tongue thrust, 141, 141f
Apposition, 21
Arch
collapse of, 6, 6f, 339, 344f
crowding in, 52
dental cast evaluation of, 52
development of, 28
form of, 52
length of
definition of, 53
incisor proclination for increasing, 91
loss of, 282
palatal canine impaction and, 255
primary dentition’s role in, 30
reduction of, during transitional dentition, 115
B
Band and loop space maintainer, 82, 83f
Band and occlusal bar, 84, 84f
Band and pontic, 84, 84f
Band and U-loop space regainer, 87, 88f
Behavioral evaluation, 43
Behavioral modification, for non-nutritive sucking, 135
Bipupillary plane, 56
Bite guards, 152
Bite plate, 403–404, 404f
Bitewing radiographs, 58
Blanching test, 211, 211f
Bluegrass appliance, 136, 137f
Bolton analysis, 54, 78, 79f
Bolton discrepancy, 115, 127, 128f, 209
Bone morphogenetic protein 2, 23
Bone remodeling, 228
Brachycephalic head shape, 45
Brodie syndrome, 360, 360–361, 372f–373f
Bruxism, 151–152
Buccal canine impaction, 254, 257f, 263–264
Buccal crossbite, 360, 372f–374f
Bud stage, 17f–18f, 17–18
Class I malocclusions, serial extraction of, 258
Clark's rule, 258
Chemotherapy, 162–163
Cervical loop, 22, 22f
Cervical headgear, 3
Central incisors, 36
Central diastema, 36
Central incisors, premature eruption of, 165, 243, 244f
early loss of, 403
extraction of, 261–262
overretained, 246
premature exfoliation of, 118
serial extraction of, 120
transposition of, 245–246, 255
unerupted, bulging of, 1
Casts, dental, 51–54
Cartilage calcification, 21
Cap stage, 18, 18f
Cartilage calcification, 21
Caps, dental, 51–54
Cellular cementum, 23
Cementoblasts, 22f, 23
Central diastema, 36
Central incisors, eruption of, before maxillary lateral incisor eruption, 240
maxillary anterior crossbite caused by, 317, 318f
diastema between, 205
overretained, 317
supernumerary, 199–200f
Cephalometric analysis of, 296
diagnosis of, 295–296
division 1, 301–302, 407f
division 2, 302, 410f
treatment of, 9, 294
facial height effects on, 294
growth patterns, 294
historical background of, 3
jaw characteristics in, 295b
morphologic characteristics of, 295, 295b
panoramic radiograph of, 62f
serial extraction in, 122–123
transverse dimension considerations, 294
treatment of camoufl age, 297
early, 294
extraoral traction, 298–299
functional appliances, 298
growth modification and occlusal guidance, 297–299
headgear, 298–300
HLH technique, 299–302, 309f–309f, 314f
lip bumper, 300–301, 301f
modified Hawley appliance, 300, 300f
one-phase, 302, 310f–315f
orthognathic surgery, 297
two-phase, 301–302, 302f–309f
variations of, 295f
Class III malocclusion, anterior crossbite and, 316
case studies of, 333f–351f
causes of, 329
classification of, 331
crossbite and, comparisons between, 331b
dentofacial characteristics of, 329
eruption of, 37, 38b
ectopic eruption of, 165, 243, 244f
extraction of, 119–122, 121f, 124f–126f
premature exfoliation of, 119f
primary root of molars, 91f
of mandibular incisors, 38–39
resorption of, 118, 119f
of incisors.
Cervical diastema, 36
Cervical incisors, eruption of, before maxillary lateral incisor eruption, 240
maxillary anterior crossbite caused by, 317, 318f
diastema between, 205
overretained, 317
supernumerary, 199–200f
Cephalometric analysis of, 296
diagnosis of, 295–296
division 1, 301–302, 407f
division 2, 302, 410f
treatment of, 9, 294
facial height effects on, 294
growth patterns, 294
historical background of, 3
jaw characteristics in, 295b
morphologic characteristics of, 295, 295b
panoramic radiograph of, 62f
serial extraction in, 122–123
transverse dimension considerations, 294
Convex facial profile, 47f, 117
Congenital hypothyroidism, 230
Corrective orthodontic treatment, 4
Craniofacial growth, 230
dentition development and, 15,
description of, 5, 116
gene effects on, 5
mouth breathing effects on, 148
occlusion affected by, 116
Crossbite anterior, See Anterior crossbite.
central incisor, 179
functional, See Pseudo–Class III malocclusion.
posterior, See Posterior crossbite.
skeletal Class III malocclusion and, 313b
thumb sucking as cause of, 133,
unilateral, 6, 7f
crowding arch, 52
degree of space analysis and, 79
delay, 400
extraction of, 120
functional. See
hyperdontia, 165
orthodontic treatment, 4
Pseudo–Class III malocclusion.
mandibular forward growth and, 397
morphologic characteristics of, 399
periodontal disease and, 401
relapse of, 399
reverse, 336f
skeletal, 398–399, 403–404
treatment of appliances for, 404–405
delayed, 400
early, 401
in mixed dentition, 403–404, 412f
in permanent dentition, 401–402
in primary dentition, 403
strategies for, 402–405
Deep overbite, 303f
Deglutition, 139–140
De-impactor spring, 242, 243f
Delayed exfoliation, of primary dentition, 31
Dental caries, 31
Dental casts
arch form and symmetry evaluations using, 52
description of, 51–52
occlusion evaluations using, 52
before serial extraction, 116
Dental follicle
anatomy of, 22–23
fibroblasts of, 24
permanent, congenital absence of, 21
tooth eruption affected by, 227
Dental history. See Occlusion.
Dental retrusion, 56
Dentition
Dentinogenesis imperfecta, 19
Dentinogenesis, 20
Dentin matrix protein-2, 23
See
Dental caries, 31
Delayed exfoliation, of primary dentition
Dentition development
Diagnostic process
Diagnostic database, 42
Desmosomes, 18
interglobular, 21
hypoplasia of, 21
monitoring of, during early-age
intraoral examination of, 48–49, 49f
bruxism effects on, 152
ankylosis effects on, 282, 282f–283f
magnification of, 16f
development of, 16f, 16–17
permanent, congenital absence
fibroblasts of, 24
anatomy of, 22–23
before serial extraction, 116
occlusion evaluations using, 52
description of, 51–52

See also
primary.
Primary
postnatal, 28
permanent, 19
neonatal, 27f, 27–28
description of, 15
craniofacial growth and, 15, 25–27
definition of, 17

Dentition
ankylosis effects on, 282, 282f–283f
bruxism effects on, 152
intraoral examination of, 48–49, 49f
monitoring of, during early-age
orthodontic treatment, 9
Dentition development
craniofacial growth and, 15, 25–27
description of, 15
neonatal, 27f, 27–28
permanent, 19
postnatal, 28
primary. See also Primary
dentition,
bud stage of, 17f–18f, 17–18
calcification stage of, 20–21
cap stage of, 18, 18f
crown stage of, 21, 21f
early bell stage of, 18f, 18–19
initiation stage of, 16f–17f, 16–17
late bell stage of, 19f–20f, 19–20
molecular level of, 22–23
morphodifferentiation stage of, 19f–20f, 19–21
root formation, 22, 22f
studies of, 22–23
retarded, 238–239
Dentogingival junction
development of, 24
tissues of, 24
Desmosomes, 18
Developmental spaces, 28–29
Diagnostic database, 42
 Diagnostic process
description of, 51
goal of, 41
interview, 42–44
questionnaire, 42–44
schematic diagram of, 42, 42f
steps involved in, 42
Diastema, 36, 94, 179f
central, 94, 179f
midline. See Midline diastema.
Dichotomy theory, 192
Digit sucking, 132–136, 134f
Digital imaging, 59
Distal drift, 76–77
Distal jet appliance, 88, 88f
Distal shoe, 82
Distal step terminal plane, 29f, 29–30, 33f
Distraction osteogenesis, 360
Divergence of the face, 47
Dolichocephalic head shape, 45, 146f
Down syndrome, 163, 231, 245
Drift, 26, 76–77
“Dual bite,” 51
Dwarfism, 230
E
E space, 110, 110f
Early exfoliation, of primary dentition, 31
Early-age orthodontic treatment
advantages of, 66
benefits of, 11–12
clinical evidence about, 10
controversies associated with, 9–11
costs of, 11
current interest in, 6–7
definition of, 4
dentition monitoring during, 9
goals of, 8
growth patterns and, 10–11
lack of training in, 12
misconceptions about, 10–11
modern views on, 41
objectives of, 4
one-phase, 8
patient benefits, 11
phases of, 8–9
practitioner benefits, 12
professional encouragement of, 12
rationale for, 7
reasons for, 4–7
results with, 11–12
single phase of, 8, 10
strategy of, 4, 8
timing of, 7–8, 298
two-phase, 9–10
Ectoderm, 22
Ectodermal dysplasia, 163
Ectomesenchyme, 16–17
Ectomesenchymal cells, 19–20, 23–24
Ectomesenchyme, 16–17
Ectopic eruption
definition of, 241
permanent canines, 243, 244f
permanent first molars, 241–242, 242f
prevalence of, 241
Ectopic impacted canines, 260
Ellis lingual arch, 82, 83f
Embryonic period, 15
Enamel
apposition of, 21
formation of, 20
mineralization of, 20–21
tetracycline discoloration of, 21
Enamel hypoplasia, 21
Enamel knot
in cusp formation, 20
definition of, 17
illustration of, 18f
Enamel matrix protein-2, 23
Enamel organ, 18, 18f
Epithelial cuff, 24
Epithelial thickening, 16, 16f
Examination(s)
clinical. See Clinical examination.
extraoral. See Extraoral examination.
photographic evaluation. See Photographic evaluation.
radiographic. See Radiographs.
Exfoliation, of primary dentition
description of, 30–32, 229
eyearly, 235–236
External enamel epithelium, 18
Extraction. See also Serial extraction.
eyearly-age orthodontic treatment
effects on need for, 11–12
space creation through, 90
Extraoral anchorage, 3
Extraoral examination
elements of, 44–45
frontal facial evaluation, 45–46, 46f
lateral facial evaluation, 46–47
Extraoral photography
facial esthetics, 55–56, 57f
frontal view, 54–57, 55f
lateral view, 55–56
oblique view, 55
Extraoral radiographs, 58–59
Extraoral traction, for Class II malocclusion, 298–299
F
Face
description of, 131
embryologic development of, 15
vertical growth of, 380
Face mask–chin cap combination, 332, 332f
Facial asymmetry, 56, 57f, 361f
Facial esthetics
composition of, 45
early-age orthodontic treatment
benefits for, 11
evaluation of, 44
malocclusion effects on, 9
photographic evaluation of, 55–56, 57f
primary dentition’s role in, 30
Facial evaluation
frontal, 45–46, 46f
lateral, 46–47
Facial form, 44
Facial height, 294
Facial profiles, 47, 47f
Facial proportion
evaluation of, 46, 46f
frontal, 56, 57f
head posture and, 148
lateral, 56, 57f
Facial symmetry, 45–46, 46f
Facial trauma, 182
Facial typing, 45
Family medical history, 43–44
Finger sucking, 132–136, 134f
Fibroblasts, 228
Fibroblasts, 228
Finger sucking, 132–136, 134f

3/19/13 11:09 AM
Growth status evaluation, 43
Growth patterns
Growth modification techniques
Growth modifi cation techniques
Groper fi xed anterior prosthesis, 85
Glycosaminoglycans, 18
Gingival groove, 27
Genetic theory, of maxillary canine
Growth status evaluation, 43
Growth patterns
Growth modifi cation techniques
Groper fi xed anterior prosthesis, 85
Glycosaminoglycans, 18
Gingival groove, 27
Genetic theory, of maxillary canine
Interproximal wedging technique, 92

Intermolar width, 92

Interglobular dentin, 21

Interdental fibers, 20

Intraoral examination

Intertransitional periods, 28

Interview, 42–44

Interproximal examination

Components of, 116

Dentition, 48–49, 49f

M

Macroglossia

description of, 49, 49f

tongue thrust associated with, 141, 141f

Malocclusions

Angle's classification of, 3, 150

Class I, 119–122, 121f, 124f–126f

Class II. See Class II malocclusion.

Class III. See Class III malocclusion.

environmental factors associated with, 293

etiology of, 42

facial esthetics affected by, 9

speech problems and, 50, 150–151

thumb/finger sucking as cause of, 133, 134f, 137f

treatment of, 115

untreated, problems secondary to, 9

Mandible

anatomy of, 25, 25f

antero shift of, 325f–326f

displacement of, 247

masticatory muscle attachment to, 26

normal closure pattern of, 400

positions of, 297

retrusion of, 412f

Mandibular arch, 49f

Mandibular canines eruption of, 37

impaation of, 265

permanent, eruption of, 37

primary

eyearly extraction of, 36

premature loss of, 35, 98f, 102f

Mandibular condyle

ankylosis of, 26

growth of, 26–27

Mandibular first molars

extraction of, 247f

maxillary first molar and, 37

mesial shift of, 38

permanent, 32

Mandibular first premolar eruption before canine eruption, 239–240

description of, 37

Mandibular growth

asymmetric, 7f, 25, 46f

direction of, 26

impinging deep bite effects on, 6

insufficient, 19

malocclusions caused by problems with, 25

at mandibular condyle, 26

occlusion affected by, 106

temporomandibular joint-related factors that affect, 26

Mandibular incisors. See also Incisor(s).

central, 34, 34f

crowding of

Bolton discrepancy as cause of, 127, 128f

description of, 38–39, 91, 105, 107, 114f, 207, 406f

eruption of, 34, 34f

gingival recession at, 118

mandibular

crowding of

Bolton discrepancy as cause of, 127, 128f

description of, 38–39, 91, 105, 107, 114f, 207, 406f

eruption of, 34, 34f

gingival recession at, 118

Mandibular incisors

description of, 47, 116

paraclinical evaluation, 51

soft tissues, 49–51

temporomandibular joint function, 51

Tongue, 49–51, 50f

Intraoral photography, 58

Intraoral radiographs, 58

Irradiation, 162–163

J

Jaw

fracture of, 246

ontogenesis of, 25, 25f

Jaw muscles, 26

J-hook headgear, 299

Jumping the bite, 298

Juvenile hypothyroidism, 230

Juvenile rheumatoid arthritis, 26

L

Laser, 214

Lasers, 214

Lateral incisors

crowding of

Bolton discrepancy as cause of, 127, 128f

description of, 38–39, 91, 105, 107, 114f, 207, 406f

eruption of, 34, 34f

gingival recession at, 118

maxillary

eruption of, 35–36, 36f

space closure with, 94

overretained, 32f

periodontal condition of, 91

primary

eyearly loss of, 81f, 85

overretained, 274, 317, 318f

roots, delayed resorption of, 109f

sequential stripping of, 109

spaces between, 28

proclination of, 35–36, 36f

space closure with, 94

root resorption of

delayed, 34f, 109f

description of, 256

spaying of, 118, 119f

Incisor liability, 33–34, 36

Inconstant swallowing, 142

Infantile swallowing, 140, 142

Initiation stage, 16f–17f, 16–17

Intercanine arch width, 34

Interceptive treatment

definition of, 4

of incisor impaction, 275

of maxillary canine impaction, 260–262

patient expectations about, 43

Interdental fibers, 207

Interglobal dentin, 21

Interproximal wedging technique, 242, 242f

Interproximal wedging technique, 224, 242f

Interproximal wedging technique, 242, 242f

Interproximal wedging technique, 242, 242f

Interview, 42–44

Interproximal examination

Components of, 116

Dentition, 48–49, 49f

description of, 47, 116

paraclinical evaluation, 51

soft tissues, 49–51

temporomandibular joint function, 51

Tongue, 49–51, 50f

Intraoral photography, 58

Intraoral radiographs, 58

Irradiation, 162–163

J

Jaw

fracture of, 246

ontogenesis of, 25, 25f

Jaw muscles, 26

J-hook headgear, 299

Jumping the bite, 298

Juvenile hypothyroidism, 230

Juvenile rheumatoid arthritis, 26

L

Lasers, 214

Lateral cephalometric radiographs, 4, 258

Lateral expansion, 93

Lateral facial evaluation, 46–47

Lateral facial proportion, 56, 57f

Lateral incisors

hypodontia of autotransplantation for, 171

canine substitution for space closure, 168–169

case studies of, 176f–179f

management of, 168–171

palatally displaced maxillary canines associated with, 255

prosthesis for, 169–171, 171f

mandibular

eruption of, 34, 34f

transposition of, 245, 249f

maxillary

eruption of, 35–36, 36f, 240

microodontia of, 208, 208f

supernumerary, 194f

transposition of, 250f

microodontia of, 208, 208f

peg-shaped, 274

proclination of, 36, 36f

supernumerary, 198f

transposition of, 245, 249f–250f, 252f–253f

Lateral jaw radiographs, 58–59

Lateral tongue thrust, 141f, 141–142

Lateral view, 55–56

Leeway space, 78, 80, 95, 276f

Ligand for receptor activator for nuclear factor kB, 30

Lingual crossbite, 380, 380f

Lip bumper, 91–92, 92f, 299, 300–301, 301f

Lip dysfunction, 209, 209f, 398

Lip line, 169

Lip position, 56, 57f

Lip proportion, 56, 57f

Lip seal, 382

Lip strain, 55f

Lipsing, 50

Locked occlusions, 6f, 7, 113f

Longitudinal panoramic radiographs, 60, 61f–65f, 116

Lower holding arch, 82, 83f, 109f

Lower lip dysfunction, 403

Index
Mandibular prognathism, 330, 341f, 346f
Mandibular second molars
eruption of, maxillary second
crown eruption before, 240
impaction of, 119, 119f
terminal plane, 32, 33f
Mandibular second premolars, 172–
174, 180–181f
Mastication
Masticatory muscles, 26
Mastication, 30
Maxillary first molars
canines.
Maxillary bone, 25
Maxillary arch
lateral labial migration of, 401
flaring of, 133
delayed treatment of midline
displacement of, 266f–267f
eruption before premolars, 239
impaction of
autotransplantation of, 265
buccal, 254, 257f, 263–264
early detection of, 257–260
ectopic, 260, 261f, 263f
etiology of, 254–256
interceptive treatment of, 260–262
labial, 256
odontoma as cause of, 269f–271f
orthodontic procedures for, 264
palatal, 254–256, 263
panoramic radiographs of, 259f,
259–260
position of, 262
prevalence of, 254
proximity of, to adjacent teeth, 259
radiographic evaluation of, 258f–259f,
258–260
signs of, 258
space deficiency as cause of, 269f–267f
step-by-step management of, 264b
surgical exposure of, 262–264, 263f
treatment of, 260–265
Maxillary first molars
tropic eruption of, 119, 119f, 243f
mandibular first molar and, 37
vertical palisading of, 118, 119f, 124
Maxillary incisors. See also
Incisor(s).
central, 35, 35f
delayed treatment of midline
displacement until complete
eruption of, 212
flaring of, 133
labial migration of, 401
lateration
description of, 35–36, 36f
eruption of, 35–36, 36f, 240
microdontia of, 208, 208f
supernumerary, 194f
liability, 36
permanent, 319
protrusion of, 35f
secondary spacing, 36, 36f
Maxillary intercanine distance, 29
Maxillary second molars
eruption of, before mandibular
second molar eruption, 240
terminal plane, 32, 33f
Mechanotherapy
incisor impaction treated with, 277f
with selective extraction, for open
bite, 383
tongue thrust treated with, 143, 143f
Meckel's cartilage, 25
Medical history, 43–44
Mentolabial sulcus, 56, 57f
Merrifield analysis, of space, 78
Mesial drift, 26, 76–77
Mesial occlusion. See Class III
malocclusion, skeletal.
Mesial shift, 38, 347f
Mesial step terminal plane, 29f,
39–30, 33, 33f
Mesiodens, 194, 208, 208f
Mesocephalic head shape, 45
Microdontia
hypodontia and, 164
illustration of, 163f
lateral incisors, 208, 208f
Midline diastema
case studies of, 216f–222f
causes of, 207–210
anterior Bolton discrepancy, 209
impinging deep bite, 209
lateral incisor hypodontia, 208,
208f
lip dysfunction, 209, 209f
mesiodens, 208, 208f
odontoma, 208
overview of, 207–208
pathologic tooth migration, 210,
210f
definition of, 205
differential diagnosis of, 210–211
etiology of, 206–210
sex and, 206
management of
in adults, 211–212
delayed, 212
in infants, 214
in mixed dentition, 212–213, 213f
in primary dentition, 213–214
results of, 213f
two-phase, 213
closure affected by, 210
prevalence of, 206
radiographs of, 211, 211f
shape of, 211, 211f
Mineralization, of hard tissues,
20–21, 23
Mixed dentition
anterior crossbite in, 217, 318f, 321f
deep bite in, 403–404, 412f
early, Class III malocclusion
treatment in, 333
frenum attachment abnormalities
in, 212–213, 213f
incisor crowding in
description of, 95, 105–106
serial extraction for, 115. See also
Serial extraction
Moyers analysis of, 78
open bite management in, 382
posterior crossbite in, 367f
space analysis of, 52–54, 78
tongue thrust treated with, 383
transverse expansion during, 93
Modified Hawley appliance, 406f
Molar(s)
distalization of, 91
first. See First molars.
mesially tipped, 91
permanent, 53
primary
ankylosis of, 165, 281, 282f, 285f
extraction of, 74, 120–121, 121f,
173
long-term retention of, 172
submerged, 285f
second. See Second molars.
Molar distalizer
with Nance anchorage, 87–88, 88f
pendulum appliance as, 92, 92f
Morphodontogenesis
Morphodifferentiation stage, 19–21
Mouth breathing
adenoid tissue location
evaluations, 150
clinical examination of, 149–150
dentoalveolar characteristics of, 146,
146f, 148–149
etiology of, 147
evaluation of, 149–150
general body growth associated
with, 147–148
lip incompetence associated with,
150
maxillofacial complex affected by,
146–147
occlusion effects of, 146–147
open bite caused by, 378
orthodontic management of, 150
posterior crossbite secondary to,
356–357
postural changes associated with,
210f
problems associated with, 149, 149t
signs of, 146f, 147–149
treatment of, 150
Moyers mixed dentition analysis, 78
MSX1, 23
MSX2, 23
MSX genes, 161
Multiradiused teeth, 22
Muscular dystrophy, 26
Occlusal system, 47
Occlusal radiographs, 58, 258, 258f
Occlusal interferences, 6, 6f–7f
Occlusal development
Occlusal bite plate, 152
O
microdontia and, 163f
definition of, 158
case study of, 182f–183f
midline diastema caused by, 208
incisor impaction caused by, 273
description of, 18, 192–193, 193f,
canine impaction caused by, 273
vertical dimension of, 293
thumb sucking effects on, 133, 134f
sagittal evaluation of, 52
preparation of, for prosthetics, 174
normal, 397
mouth breathing effects on, 378, 378f, 381–382, 382f
midline diastema effects on, 210
mandibular growth effects on, 106
locked, 6f, 6–7, 113f
importance of, 25
hyperdontia effects on, 196, 197f
definition of, 166
occlusal effects on, 196
locked occlusions effect on, 6f, 6–7
long process of, 5
mechanisms that affect, 5–6
prenatal stage of, 16–27
tongue’s role in, 27
Occlusal interferences, 6, 6f–7f
Occlusal radiographs, 58, 258, 258f
Occlusal system, 47
Occlusion
Class I, 47
dental cast evaluation of, 52
frenum attachment abnormalities
effect on, 210
hyponodontia effects on, 196, 197f
hyponodontia effects on, 166
importance of, 25
locked, 6f, 6–7, 113f
mandibular growth effects on, 106
midline diastema effects on, 210
mouth breathing effects on, 146–147
normal, 397
pacifier sucking effects on, 139
preparation of, for prosthetics, 174
sagittal evaluation of, 52
serial extraction and, 117
space loss and, 76
thumb sucking effects on, 133, 134f
type of, 52
vertical dimension of, 293
Odontoblastic process, 20
Odontoblasts, 18–20, 19f, 30
Odontoma
canine impaction caused by, 289–291
description of, 18, 192–193, 193f,
200f–201f, 208, 255
incisor impaction caused by, 273
midline diastema caused by, 208
Oligodontia
case study of, 182f–183f
computed tomography of, 59, 59f
definition of, 115
management of, 167
microdontia and, 163f
One-phase orthodontic treatment, 5
Open bite
anterior
tongue thrust and, 142
illustration of, 49f
tongue pushing caused by, 50
thumb sucking as cause of, 133, 134f
case studies of, 384f–396f
cephalometric evaluation of, 380f
classification of, 381
dental, 379
differential diagnosis of, 379–380
etiology of, 379–380
finger sucking as cause of, 379,
378f, 381–382, 384f
geneic factors, 378–379
morphic characteristics of, 379
mouth breathing as cause of, 378
non-nutritive sucking as cause of, 378,
378f, 381–382, 384f
overview of, 377–378
serial extraction in patients with, 123
skeletal, 379
tongue force abnormality as cause of, 378, 379f
tongue guard for, 144, 143f
tongue thrust and, 140, 141f, 142,
379, 381, 387f. See also Tongue thrust.
treatment of
camouflage, 380
closing the drawbridge, 383, 383f
early, 380–383
growth modification, 382–383, 383f
lip seal, 382
mechanotherapy with selective extraction, 383
in mixed dentition, 382
orthognathic surgery, 380
posterior facial height–anterior facial height ratio increase, 383, 383f
strategies for, 380
type I, 381, 384f–386f
type II, 381, 387f
type III, 381, 388f–396f
vertical growth pattern associated with, 390f
Oral cavity, 48
Oral drive theory, 132
Oral habits, abnormal
tongue thrust as cause of, 133,
49f
anterior tongue thrust and, 142
early-age.
Osteoprotegerin, 30
Osteogenesis, 228
Osteoclastogenesis, 228, 230
Parathyroid hormone receptor 1, 230
orthodontic treatment.
Parodontitis, 236
Pedo temporary bridge, 85
Periodontal disease, 49, 401
Periodontal ligament
colagen fibers of, 24, 25f
description of, 22
development of, 24, 25f
formation of, 23
remodeling of, 228
tooth eruption affected by, 227–228
Periodontitis, 236
Permanent dentition
ankylosis of, 31
eruption of, 30
formation of, 19	nonsyndromic agenesis of, 160
premature eruption of, 235–236
Phenotypic expression of, 16
Photographic evaluation
applications of, 54
extraoral. See Extraoral photography.
intraoral, 58
before serial extraction, 116
Physical growth evaluation, 43
Pierre Robin syndrome, 49–50
Porter appliance, 93, 94f, 362, 363f
Posterior crossbite
Brodie syndrome, 360–361,
272f–373f
buccal, 360, 372f–374f
case studies of, 364f–374f
clinical examination of, 361
definition of, 355
delayed treatment of, 357, 358f
differential diagnosis of, 361–362
early treatment of, 359, 362–366
etiology of, 356–357
functional shift as cause of, 399f
illustration of, 49f
lateral mandibular shift caused by, 51
lingual, 360, 360f
mandibular shift and, 365f–366f,
369f–371f
maxillary arch constriction associated with, 355, 357, 359
in mixed dentition, 367f
morphologic characteristics of, 355
mouth breathing as cause of, 356–357
palatal, 360
paraclinical evaluations, 362
importance of, 30
initiation stage of, 16f–17f, 16–17
late bell stage of, 19f–20f, 19–20
life history stages of, 16
loss of
premature, 74
space lost after, 75
molecular level of, 22–23
morphodifferentiation stage of, 19f–20f, 19–21
overretained, 172
posterio crossbite in, 368f
premature loss of, 74
root formation, 22, 22f
root resorption of, 32, 282
sequential stripping of, 109
spacing in, 28, 29f
studies of, 22–23
terminal plane of, 29f, 29–30
Primary epithelial band, 16
Primary failure of tooth eruption, 236–238, 237f
Primary molars
ankylosis of, 37, 165
extraction of, 241
Profile
lateral, 55
photographic evaluation of, 55
space analysis and, 79
types of, 47, 47f, 53
Prosthesis
fiberglass reinforced composite resin
Primate spaces, 28, 29f
Primate teeth
impaction of, 119, 119f
Hypodontia of, 172
Ankylosis of, 31
bud stage of, 17f–18f, 17–18
calcification stage of, 20–21
canines
early loss of, 403
extraction of, 261–262
overretained, 246
premature exfoliation of, 118
serial extraction of, 120
cap stage of, 18, 18f
Class III malocclusion treatment in, 333, 334f
classification of, 28
crown stage of, 21, 21f
deep bite in, 403
delayed exfoliation of, 31
dental lamina, 16f, 16–17
ever bell stage of, 18, 18–19
ever exfoliation of, 31
eryption of
delayed, 233b
description of, 28
evaluation of, 48
exfoliation of, 30–32, 229, 235–236
frenum attachment abnormality
management in, 213–214
Hypodontia of, 172
periapical, 58, 211, 211f
before serial extraction, 116
supernumerary teeth, 197, 197f
RANK. See Receptor activator for nuclear factor kB
RANKL. See Ligand for receptor activator for nuclear factor kB
rapid palatal expander, 364, 364f
Receptor activator for nuclear factor kB, 30
Reciprocal induction, 20
Reduced dental epithelium, 24
Reminder therapy, for non-nutritive sucking, 135
Removable bite plate appliance, 403
Removable expanders, 94
Removable orthodontic appliances, 136, 137f, 243, 298, 324, 324f
Removable partial denture, for lateral incisor hypodontia, 170
Removable space maintainers, 235–236, 235–236f
Removable space regainers, 89f, 89–90
Retained infanilete swallow, 140
Reward therapy, for non-nutritive sucking, 135
Ricketts’ esthetic line, 56
Root development, 117
Root formation
illustration of, 22, 22f
tooth eruption and, 227
Root resorption
crescent moon–shaped, 118, 119f
delayed, 324
primary tooth, 32
regulation of, 30
Rule of fifths, 46, 56, 57f
S
Sagittal expansion, 90–92, 91f–92f, 99f
Schwartz removable slow expander, 94f
Scissors bite, 360
Second molars
eruption of, before premolars, 239
mandibular, 238f
second
ankylosis of, 165, 165f
hypodontia of, 172–174, 180f–181f
transposition of, 247f, 282, 283f
supernumerary, 195
transposition of, 245
Preventive orthodontic treatment, 4
Primary dentition
ankylosis of, 31
bud stage of, 17f–18f, 17–18
calcification stage of, 20–21
canines
early loss of, 403
extraction of, 261–262
overretained, 246
premature exfoliation of, 118
serial extraction of, 120
cap stage of, 18, 18f
Class III malocclusion treatment in, 333, 334f
classification of, 28
crown stage of, 21, 21f
deep bite in, 403
delayed exfoliation of, 31
dental lamina, 16f, 16–17
ever bell stage of, 18, 18–19
ever exfoliation of, 31
eruptio of
delayed, 233b
description of, 28
evaluation of, 48
exfoliation of, 30–32, 229, 235–236
frenum attachment abnormality
management in, 213–214
hypodontia of, 172
periapical, 58, 211, 211f
before serial extraction, 116
supernumerary teeth, 197, 197f
RANK. See Receptor activator for nuclear factor kB
RANKL. See Ligand for receptor activator for nuclear factor kB
rapid palatal expander, 364, 364f
Receptor activator for nuclear factor kB, 30
Reciprocal induction, 20
Reduced dental epithelium, 24
Reminder therapy, for non-nutritive sucking, 135
Removable bite plate appliance, 403
Removable expanders, 94
Removable orthodontic appliances, 136, 137f, 243, 298, 324, 324f
Removable partial denture, for lateral incisor hypodontia, 170
Removable space maintainers, 235–236, 235–236f
Removable space regainers, 89f, 89–90
Retained infanilete swallow, 140
Reward therapy, for non-nutritive sucking, 135
Ricketts’ esthetic line, 56
Root development, 117
Root formation
illustration of, 22, 22f
tooth eruption and, 227
Root resorption
crescent moon–shaped, 118, 119f
primary tooth, 32
regulation of, 30
Rule of fifths, 46, 56, 57f
S
Sagittal expansion, 90–92, 91f–92f, 99f
Schwartz removable slow expander, 94f
Scissors bite, 360
Second molars
eruption of, before premolars, 239
mandibular
impaction of, 119, 119f
terminal plane, 32, 33f
maxillary, 32, 33f
Second premolars
hypodontia of, 172–174, 180f–181f
transposition of, 247f, 282, 283f
Secondary spaces, 28–29
Secondary spacing, 36, 36f
Sectional bracketing, 89, 89f
Sequential selective enamel stripping, 90
Sequential stripping of primary teeth, 109
Serial extraction
in Class I malocclusions, 119–122, 121f, 124f–126f
in Class II malocclusions, 122–123
in Class III malocclusions, 123
clinical examination before, 116
crowding measurements before, 117
definition of, 115
description of, 9
diagnostic procedures before, 116–117
historical background of, 115
mandible, 122–123
maxilla, 122–123
occlusal considerations, 117
in open bite, 123
paraclinical examinations before, 116–117
planning for, 117–119
sequence of, 120–122
skeletal pattern and, 117–118
timing of, 120

Single-tooth implant, for

Space closure
Space analysis
 Bolton, 54, 78, 79f
considerations in, 79–80
definition of, 77
Merrifield, 78
methods of, 54
mixed dentition, 52–54
Moyers, 78
Nance, 54, 77–78
Staley and Kerber, 78
study casts for, 52–54
Tanaka and Johnston, 78
types of, 77–78
Space creation
Space maintenance
timing of, 120
skeletal pattern and, 117–118
sequence of, 120–122
in open bite, 123
occlusal considerations, 117

Space maintenance
 contra indications for, 80–81
definition of, 80
indications for, 80
space closure as, 74–75, 94
space maintainers for. See Space maintainers
Space management

case studies of, 96–102
diagnostic procedures used in, 77–80
fundamentals of, 73–77
planning for, 77–80
treatment options for, 80–95
Space regainers, 87–89, 88f–89f
Space regaining, 86–90, 88f–89f, 97f, 102f
Space supervision
case study of, 100f–101f
combination approach, 110–111
definition of, 95
E space preservation, 110, 110f
methods of, 109–111
sequential stripping of primary teeth, 109
Speech
development of, 30
physiology of, 150
Speech problems
eyear incisor loss and, 85
malocclusion and, 50, 150–151
soft tissue causes of, 151
tongue thrust as cause of, 142
Staley and Kerber analysis, of space, 78
Stellate reticulum, 18, 19f, 30
Step-type anterior arch, 383, 383f
Stomion plane, 56
Stomodeum, 16f, 16
Straight facial profile, 47f
Stratum intermedium, 18, 19f
Subnasale line, 56
Sucking, non-nutritive.
See also
Nutritive sucking.

Sucking, non-nutritive.
See also
Nutritive sucking.
eruptive phase of, 226
factors that disturb
achondrodysplasia, 230
cleidocranial dysostosis, 231
Down syndrome, 231
genetic, 230–231
hypothyroidism, 230
local, 231
overview of, 229–230
systemic, 230
factors that influence, 76
failure of, 236–238, 237f
general pattern of, 80
guidance of, 95
hydrostatic pressure and, 227
mechanisms of, 226–228
molecular bases of, 228
periodontal ligament effects on, 227–228
phases of, 226
post eruptive phase of, 226
prediction of, 76–76
pre-eruptive phase of, 226
primary dentition, 28
retarded, 238–239
root formation and, 227
sequence of, 37
stages of, 229
timing of, 76
tooth transposition. See Tooth
transposition.
Tooth germs, 28, 226
Tooth grinding. See Bruxism.
Tooth impaction
definition of, 254
ectopic, 260, 262f, 268f
incisors. See Incisor(s), impaction of.
mandibular canines, 265
maxillary canines. See Maxillary
canines, impaction of.
Tooth migration, 26, 210, 210f, 247
Tooth movement
bone support in edentulous areas
achieved through, 171
early-age orthodontic treatment
effects on need for, 12
Tooth size–arch length discrepancy
description of, 106–107
space deficiency caused by, 123
Tooth transposition
case studies of, 249f–253f
in children, 246f
complete, 244, 250f
definition of, 244
dental anomalies associated with,
244
description of, 164
diagnosis of, 248
etiology of, 246–247
incidence of, 245
incidence, 244, 248
treatment of, 248
Tooth-supported restorations
lateral incisor hypodontia
managed with, 169–170
mandibular second premolar
hypodontia managed with,
173–174
Tooth-supporting tissues, 22f, 23–24
Transcription factors, 23
Transitional dentition
definition of, 32
dimensional arch changes during,
38
eruption problems, 60
incisor crowding during, 110
panoramic radiographs of, 116
phase I, 32–34, 33F–34F
phase II, 34f–36f, 34–36
phase III, 37
Transpalatal arch, 82, 83f
Transposition. See Tooth
transposition.
Transverse expansion
indications for, 93
space creation through, 92–94, 94f,
99f
Trauma
ankylosis caused by, 282
facial, 162
incisor impaction caused by, 273
Treatment planning
cephalometric radiography for, 67
description of, 41–42
serial extraction, 117–119
Trisomy 21. See Down syndrome.
2 x 4 bonding, 88–89, 89f, 97, 122,
319, 324
Two-phase orthodontic treatment, 5,
9–10
U
“Ugly duckling” stage, 35f, 35–36,
205, 257, 258f
Upper lip–lower lip height ratio, 46,
47f
Utility arch, 404
V
Vertical dimension of occlusion, 283
Vertical drift, 26
Vestibular lamina, 17, 17f
Visceral swallowing, 142
W
W-arch, 93, 94f, 362, 363f
Warford analysis, 260, 261f
Wax bite, 51
Weinberger appliance, 242, 243f
Wiskott-Aldrich syndrome, 236
Wnt signaling pathway, 161