Evidence-Based Clinical Orthodontics
Dedication

This book is dedicated to our families, teachers, mentors, students, and in particular to our patients. More importantly, this book is dedicated to you, the reader, the present and future of orthodontics.

Library of Congress Cataloging-in-Publication Data

617.6'43--dc23 2012017471

© 2012 Quintessence Publishing Co Inc

Quintessence Publishing Co Inc
4350 Chandler Drive
Hanover Park, IL 60133
www.quintpub.com

All rights reserved. This book or any part thereof may not be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher.

Editor: Leah Huffman
Design: Ted Pereda
Production: Sue Robinson

Printed in China
Contents

In Memoriam vii
Foreword viii
Preface ix
Contributors x

1 Introduction: Evidence-Based Clinical Practice 1
 Nikolaos Pandis, Daniel J. Rinchuse, Donald J. Rinchuse, James Noble

2 Early Intervention: The Evidence For and Against 7
 Daniel J. Rinchuse, Peter G. Miles

3 Bonding and Adhesives in Orthodontics 17
 Peter G. Miles, Theodore Eliades, Nikolaos Pandis

4 Wires Used in Orthodontic Practice 31
 William A. Brantley

5 Class II Malocclusions: Extraction and Nonextraction Treatment 47
 Peter G. Miles, Daniel J. Rinchuse

6 Treatment of Class III Malocclusions 61
 Peter Ngan, Timothy Tremont

7 Subdivisions: Treatment of Dental Midline Asymmetries 89
 Peter G. Miles

8 Evidence-Based Use of Orthodontic TSADs 107
 James Noble
The Effectiveness of Treatment Procedures for Displaced and Impacted Maxillary Canines 127
Tiziano Baccetti

Orthodontically Induced Inflammatory Root Resorption 137
M. Ali Darendeliler, Lam L. Cheng

Orthodontics and TMD 157
Donald J. Rinchuse, Sanjivan Kandasamy

Orthodontic Retention and Stability 167
Daniel J. Rinchuse, Peter G. Miles, John J. Sheridan

Accelerated Orthodontic Tooth Movement 179
Eric Liou

Index 201
In Memoriam

Dr Tiziano Baccetti (1966–2011)

Chapter 9 of this book, “The Effectiveness of Treatment Procedures for Displaced and Impacted Maxillary Canines,” was written by Dr Tiziano Baccetti. This may well have been his last scholarly work; he completed this chapter just a few weeks before his untimely and tragic death on November 25, 2011, at the young age of 45. While posing for a photograph on a historic bridge in Prague, Czech Republic (he was the Keynote Speaker at the 9th International Orthodontic Symposium held November 24 to 26, 2011), he slipped on old stonework at the base of one of the saintly statues that decorate the bridge and fell 8 meters to the rocks below. It was the Charles Bridge—Ponte Carlo in Italian, the same name as Tizanio’s beloved father, who knows that bridge well and for whom the picture was intended.

Tiziano authored over 240 scientific articles on diverse orthodontic topics. He has been described by those who knew him best as a “superman.” This is supported by what he had accomplished in his short life. In 2011, Tiziano gave the Salzmann Lecture at the 111th Annual American Association of Orthodontists Session on “Dentofacial Orthopedics in Five Dimensions.” In concluding his presentation, he explained how his grandfather in Italy had told him as a young boy that one day he would “find his America” and fulfill his dreams. Tiziano said at the end of his lecture, “I have found my America, fulfilled my dreams.” Few, even with a long life, can say that they have fulfilled their dreams, their ambitions. We can be comforted that Tiziano did.

We feel fortunate that we can share Tiziano’s excellent chapter with our readers.
Foreword

This text can serve as a reference guide for research and studies in many difficult clinical areas where there is a lack of evidence-based information. The distinguished editors are all involved in education, research, and practice, and they have invited other well-known experts and authorities to critically evaluate the literature and topics such as early treatment, extraction and nonextraction, Class III treatment, asymmetries, temporary skeletal anchorage devices (miniscrews), impacted canines, root resorption, temporomandibular disorders, retention, stability, and accelerated orthodontic tooth movement. These are all critical areas in the full scope of clinical orthodontic practice. I am sure that every orthodontist will learn from the enormous contributions provided so clearly in this text. The first chapter introduces and defines evidence-based clinical practice. Every other chapter provides evidence for and against each controversy and concludes with a summary and points to remember.

The topics are covered in detail with extensive illustrations, cases, diagrams, and references. All discussions are based on current research findings, and when evidence is not available, it is clearly stated as such. As the editors point out, the purpose of this book is to provide the orthodontist with an evidence-based perspective on selected important orthodontic topics and to stimulate practicing orthodontists to reflect on their current treatment protocols from an evidence-based view. In the future, clinical decisions should be based ideally on evidence rather than personal opinion, and treatment strategies should be proven to be both efficacious and safe.

I am very honored and privileged to have been asked to present this foreword because this text should be the evidence-based text for EVERY orthodontist and student.

Robert L. Vanarsdall, Jr, DDS
Assistant Dean for Advancement of Dental Specialties
Professor, Department of Orthodontics
University of Pennsylvania
The specialty of orthodontics has evolved from an apprenticeship to a learned profession requiring academic training. Nevertheless, many in our profession still cling to biased beliefs and opinions rather than embracing evidence-based practice. When evidence conflicts with what experience has taught, it becomes even more difficult for such practitioners to change their views. Hence, there is complacency and resistance within the profession to adopt evidence-based treatments.

Most orthodontists experience at least enough treatment success to support a practice. Yet treatment success does not necessarily equate with treatment efficacy or even verification of an appropriate diagnosis. This success can be the biggest obstacle to change. Clinical success may be associated with a multitude of appliances, strong belief in a particular philosophy, financial motivations (even unethical ones such as inappropriate phase I treatments), the difficulties involved in switching from an experience-based practice to an evidence-based practice, and a simple lack of understanding of evidence-based clinical practice (described in chapter 1). In our profession, therefore, treatment efficacy is currently evaluated broadly in relation to benefits, costs, risks, burden, and predictability of success with various treatment options.

No longer can the role of evidence-based decision making be shunned and ignored in favor of clinical experience alone. From both ethical and legal perspectives, sound clinical judgment must be based on the best evidence available. Today a paternalistic view, whereby the doctor knows what is best for the patient without soliciting patient input, is unacceptable. Patients have a right to autonomy and input into their treatment provided that it does no harm.

The 2001 Institute of Medicine report estimated that it takes an average of 17 years for new, effective medical research findings to become standard medical practice. For example, there was a reemergence of the use of self-ligating brackets in the mid-1990s amid claims not only of faster ligation but also of quicker and more comfortable treatment. Several prospective clinical trials began to be published in 2005 and then two systematic reviews in 2010 concluded that in fact there was no difference in discomfort or treatment time when self-ligating brackets were used compared with conventional brackets. Yet despite the weight of evidence, these claims of faster treatment times and less discomfort are still made and supported by many orthodontists. As Dr Lysle Johnston, Jr, pointed out, our specialty tends to have a pessimistic attitude toward evidence and a minimal capacity to judge its quality. But what effect does this pessimism have on our patients? Can we as an orthodontic profession really wait 17 years to incorporate emerging quality evidence into our clinical practices?

With the exponential growth of information in today’s world, how does the busy orthodontist evaluate evidence that will affect his or her practice? This book was conceived out of a need for evidence regarding relevant clinical topics and ongoing controversies in orthodontics such as early treatment, bonding protocols, treatment of Class II and Class III malocclusions, asymmetries, impacted canines, root resorption, retention, and accelerated tooth movement. We have done our best to incorporate the best evidence available regarding these topics, and hopefully this book will show you not only how to judge quality evidence but also why it is so important to implement it.

Reference

Acknowledgments

This book would not have been possible without the support of the publisher, Quintessence, and the tedious and dedicated work of our editor, Leah Huffman. We especially want to thank all of the contributing authors who have taken the time to write chapters in this book.
Contributors

Tiziano Baccetti, DDS, PhD*
Assistant Professor
Department of Orthodontics
University of Florence
Florence, Italy

Thomas M. Graber Visiting Scholar
Department of Orthodontics and Pediatric Dentistry
University of Michigan School of Dentistry
Ann Arbor, Michigan

William A. Brantley, PhD
Professor and Director
Graduate Program in Dental Materials Science
Division of Restorative, Prosthetic, and Primary Care Dentistry
College of Dentistry
The Ohio State University
Columbus, Ohio

Lam L. Cheng, BDSc, MDSc, MOrth RCS (ED), MRACD (Ortho)
Honorary Associate Professor
Department of Orthodontics
Faculty of Dentistry
The University of Sydney
Sydney, Australia

M. Ali Darendeliler, BDS, PhD, Dip Orth, Certif Orth, Priv Doc, MRACD (Ortho)
Professor and Chair
Department of Orthodontics
Faculty of Dentistry
The University of Sydney
Sydney, Australia

Theodore Eliades, DDS, MS, Dr Med, PhD
Professor and Director
Department of Orthodontics and Pediatric Dentistry
University of Zurich
Zurich, Switzerland

Sanjivan Kandasamy, BDSc, BSc Dent, Doc Clin Dent, MOrth RCS, MRACDS
Clinical Senior Lecturer
Department of Orthodontics
University of Western Australia
Perth, Australia

Eric Liou, DDS
Director
Department of Orthodontics and Craniofacial Dentistry
Chang Gung Memorial Hospital
Taipei, Taiwan

Adjunct Assistant Professor
Department of Orthodontics
University of Saint Louis
St Louis, Missouri

*Deceased.
Peter G. Miles, BDSc, MDS
Senior Lecturer
Department of Orthodontics
University of Queensland School of Dentistry
Brisbane, Australia
Visiting Lecturer
Graduate Program in Orthodontics
Seton Hill University Center for Orthodontics
Greensburg, Pennsylvania
Private practice
Caloundra, Australia

Peter Ngan, DMD
Professor and Chair
Department of Orthodontics
West Virginia University School of Dentistry
Morgantown, West Virginia

James Noble, BSc, DDS, MSc, FRCD(C)
Visiting Lecturer
Division of Orthodontics
University of Manitoba
Winnipeg, Manitoba
Canada
Visiting Clinical Lecturer
Graduate Program in Orthodontics
Seton Hill University Center for Orthodontics
Greensburg, Pennsylvania

Nikolaos Pandis, DDS, MS, Dr med dent, MSc
Private practice
Corfu, Greece

Daniel J. Rinchuse, DMD, MS, MDS, PhD
Professor and Associate Director
Graduate Program in Orthodontics
Seton Hill University Center for Orthodontics
Greensburg, Pennsylvania

Donald J. Rinchuse, DMD, MS, MDS, PhD
Professor and Program Director
Graduate Program in Orthodontics
Seton Hill University Center for Orthodontics
Greensburg, Pennsylvania

John J. Sheridan, DDS, MSD
Clinical Associate Professor
School of Orthodontics
Jacksonville University
Jacksonville, Florida

Timothy Tremont, DMD, MS
Clinical Associate Professor
Department of Orthodontics
West Virginia University School of Dentistry
Morgantown, West Virginia
Private practice
White Oak, Pennsylvania
CHAPTER 3
Bonding and Adhesives in Orthodontics

Introduction

Treatment efficiency in orthodontics relies on several factors, including accurate bracket positioning and effective bonding of brackets to the enamel. The advent of direct bonding of orthodontic attachments to the etched enamel surface as first described by Newman¹ was a major advance in orthodontic treatment. He described a technique using 40% phosphoric acid for 60 seconds, and this technique remained basically unchanged for another 25 years. Shorter etch times were later examined in clinical trials, and no significant difference in bond failure rates were found between 60-second and 15-second etch times.²,³ Hence, over time we have seen a reduction in practitioner acid etch times from 60 seconds in 1986 to an average of 30 seconds by 1996, which has remained the same up to 2008.⁴ Despite this reduction in etch times, the reported average bond failure in orthodontic offices has remained at 5%; however, this data comes from a survey,⁴ so it may well underestimate the true breakage rate. Bracket debonding during treatment is inconvenient and costly to both the orthodontist and the patient. In our own practices, our goal is to have as low a bond failure risk as possible, so it is preferable to be 5% or lower. As demonstrated in Table 3-1, a practice with an average of 250 case starts per year and an average treatment time of 24 months can save 4 repairs per day (or 776 per year) if the bond failure risk can be reduced from 10% to 2%.

So what steps should we take and what information can we gather from the literature to help us in such a basic skill as the bonding of orthodontic brackets? Some may choose to base their choice of adhesive or primer on the myriad of laboratory studies that have been published over the years. However, there are a number of problems with this approach. The American Dental Association Council on Dental Materials reported that most laboratory bonding studies cannot predict the clinical behavior of the adhesives tested.⁵ Some of the limitations of in vitro studies include that most in vitro studies are conducted within a short time after bonding (often within 24 hours), so the potential influence of the oral environment on the bonding material cannot be taken into account. Thermocycling cannot replicate the effects of bond degradation by saliva, and the loading rates are slow compared with chewing. Bond strength can also be affected clinically by pH and microbial degradation.⁶,⁷ In a systematic review of bond studies, many factors were found to play a significant role in the final bond strength measured in laboratory studies.⁸ For example, water storage can decrease bond strength by an average 10.7 MPa, each second of curing time with a halogen light can increase bond strength by 0.077 MPa, and each millimeter per minute of greater crosshead speed of the Instron machine increases bond strength by 1.3 MPa. The authors of the review concluded that many in vitro studies fail to report test conditions that could significantly affect the outcome.⁹

Some clinicians will judge or select an adhesive from a laboratory study based on its mean or median bond strength without also considering the variation. For example, Fig 3-1 shows two curves representing bond strengths in MPa for two adhesives, both having the same mean bond strength of 13 MPa, which is considered adequate for the orthodontic bonding of brackets. However, if we pick an arbitrary bond strength of about 8 MPa, as suggested by Reynolds⁹ as the minimum (6 to 8 MPa) required bond strength to survive clinically, we can see that the adhesive represented by the blue curve has substantially fewer brackets that could potentially fail compared with the adhesive represented by the pink curve. For these reasons, even a well-controlled, statistically valid laboratory study of bond strength should merely serve as a precursor to a controlled clinical investigation. It is important for the clinician to realize that most bond strength tests are...
Fig 5-1 Plotting normal curves based on the average and standard deviation data from Heo et al. Note that a sizeable proportion of the two-step cases moved slower than the en-masse cases (shaded area under the pink two-step curve). En-masse space closure saved an average 4.8 months (0.4 years) of treatment time with no noticeable difference in anchorage loss.

Fig 5-2 (a to j) This patient had mild spacing in the maxillary arch that would not be expected to require “round tripping,” so en-masse space closure has been selected. However, the mandibular arch exhibits crowding, with the mandibular right central incisor blocked out and showing signs of inadequate attached gingiva and a potential for gingival recession. For this reason, two-step canine retraction is used in the mandibular arch to “unravel” the crowding while reducing the risk of proclining the mandibular right incisor.
the spaces were 0.9 years (1 standard deviation = 0.6 to 1.3 years) in the en-masse group versus 1.3 years (1 standard deviation = 0.6 to 2.0 years) in the two-step retraction group (Fig 5-1). Two-step retraction demonstrated no benefit in terms of anchorage loss and a tendency to take longer than en-masse retraction. No difference in anchorage loss was also found in a pilot randomized controlled trial (RCT) comparing en-masse retraction with two-step retraction. Therefore, en-masse retraction is the treatment of choice for efficiency. However, there are individual cases in which initial sectional canine retraction or a trapped coil on a continuous archwire is preferred to alleviate anterior crowding (Fig 5-2), such as when not “unraveling” the crowded anterior teeth first would “round trip” them and possibly create periodontal concerns. This treatment philosophy is supported by Burstone, who argued that separating the retraction of canines from that of the incisors makes little sense because all six teeth can be retracted at once with relatively low forces; the only patients for whom separate canine retraction is appropriate, he continued, are those with anterior crowding as a result of arch-length problems. With the trend toward longer treatment times with two-step retraction, there may be an associated risk of greater root resorption. However, in a clinical trial investigating this, no clinically or statistically significant difference could be found.

Some believe that tipping mechanics during canine retraction may be more efficient than bodily retraction. However, a split-mouth study in 14 subjects found that bodily retraction was faster than tipping because of less time spent uprighting the roots, with anchorage loss similar in both groups (17% to 20% or 1.2 to 1.4 mm). The authors also found that the use of a Nance button did not provide absolute anchorage. A previous study had found no difference in the rate of canine retraction but did not measure tipping or time spent uprighting. The split-mouth study also recorded a greater anchorage loss with the tipping mechanics. Another option when retracting canines is to use either a single wing or a twin (also called a Siamese) bracket. The advantage of a wider bracket in this situation is that it allows better tip control because it is easier to generate the required moments needed to bring the roots parallel to one another at extraction sites.

When sliding mechanics are used, a wider bracket has a smaller contact angle and requires less force to generate the moment during space closure (Fig 5-3). Conversely, single wing and narrow brackets, including some self-ligating bracket designs, potentially require more force or demonstrate a greater resistance to sliding because of the greater contact angle and smaller moment arm. This is supported by two clinical trials evaluating the rate of maxillary canine retraction and en-masse space closure. Both studies found a conventional twin bracket resulted in a slightly faster rate of space closure (1.2 mm/month) compared with the slightly narrower self-ligating brackets (1.1 mm/month and 0.9 mm/month).

Anchorage

As previously described, it appears from the best evidence available that there is no advantage to two-step retraction over en-masse retraction when it comes to anchorage. However, there are other options available for reinforcing anchorage, such as transpalatal arches (TPAs), headgear, and, and more recently, temporary skeletal anchorage devices (TSADs) or miniscrews. When examining the effect of the TPA during extraction treatment, Zablocki et al found no significant effect on either the anteroposterior or vertical position of the maxillary first molars. In a study comparing TPAs, headgears, and TSADs, the TSADs and headgears helped to control anchorage during leveling and alignment while the TPA group experienced anchorage loss (mean of 1.0 mm; \(P < .001 \)). However, during the space closure phase, only the TSAD group was stable. Overall, the anchorage loss per incisor retraction was 2% for the TSAD group, 15% for the headgear group, and 54% for the TPA group. A potential confounder in this study was that compliance with headgear wear was not measured, so compliance was assumed when molars remained stable and non-compliance suspected when they were not, representing what would happen clinically. Other authors found a similar 1.2-mm anchorage saving with 1.4 mm greater retraction of the anterior teeth when using skeletal anchorage (miniplates, miniscrews, or microscrews), while others have found palatal implants to be at least as effective as
Fig 6-4 (a to j) An 8-year-old boy presented with an anterior crossbite and a maxillary transverse deficiency. Green outlines indicate optimal tooth positions within the jaws.
Early Orthodontic Treatment

Indications

Objectives of early Class III treatment may include (1) preventing progressive hard or soft tissue damage, such as enamel abrasion and bony or gingival dehiscence; (2) improving skeletal discrepancies and possibly avoiding orthognathic surgery; (3) improving occlusal function; (4) developing arch length; and (5) improving dental and facial esthetics. Common conditions warranting early treatment are anterior or posterior crossbites with or without functional shifts and blocked-out maxillary lateral incisors. Favorable factors for successful early treatment include mild to moderate skeletal disharmony, no familial mandibular prognathism, a convergent facial type, symmetric condylar growth, and expected good cooperation. Patients and parents should be informed that unpredictable dysplastic skeletal growth in the future may necessitate orthognathic surgery despite early intervention.

Borrie and Bearn published a systematic review of 45 articles to identify the appropriate method for anterior crossbite correction. The authors found low-level evidence, and no statistical methods were employed for the analysis. They stated that higher-level studies are necessary before definitive conclusions can be made.

Maxillary expansion and partial fixed appliances

Figure 6-4 shows a patient who presented with an anterior crossbite and a maxillary transverse deficiency. Associated with the transverse discrepancy is inadequate arch length for the unerupted maxillary lateral incisors. This particular patient had a near optimal anteroposterior positioning of the maxilla and mandible, as indicated by the relationship of the optimal incisors to the GALL (Fig 6-4j). The panoramic radiograph (Fig 6-4h) showed that the lateral incisors were ready to erupt but were blocked out of the arch. The primary first molars had minimal root resorption and, along with the permanent first molars, provided good anchor units for rapid maxillary expansion (RME).

A Hyrax expander was inserted, and brackets were bonded to the central incisors and primary canines (maxillary premolar brackets were used on the primary canines) (Figs 6-4k to 6-4m). Skeletal expansion was accomplished with two turns per day for 10 days. The expander was tied off, and a 0.012-inch nickel-titanium (Ni-Ti) wire was inserted from the right primary first molar through the right canine, central incisors, left canine, and left primary first molar. Six weeks later, a 0.018-inch Ni-Ti wire was inserted, and a Ni-Ti open coil was compressed between the incisors and the primary canines (Figs 6-4n to 6-4p). The archwire was cinched distal to the primary first molar brackets to direct...
Fig 7-10 (a to d) The maxillary right first molar required extraction, so miniscrew anchorage was used to protract the second molar into its place. This was done prior to placement of full fixed appliances to reduce the overall time in full braces. (e and f) The second molar has taken the place of the maxillary right first molar, and the third molar erupted and aligned to replace the second molar.

Fig 7-11 (a to g) Inappropriate extraction of the maxillary right first premolar as a child resulted in a midline shift and Class III canine relationship. Space was reopened in the less visible second premolar position for implant and crown placement.
Other Asymmetries

Asymmetries can also be created by the inappropriate extraction of teeth in crowded dentitions, by congenitally absent teeth or impacted teeth, or by the loss of teeth. For example, the patient in Fig 7-10 had an internally resorbing maxillary right first molar that required extraction. Because she had only minor crowding in a Class I occlusion, a nonextraction approach was preferred. After consultation with the family, miniscrews were placed to protract the second molar into the first molar space. After 6 months and six visits, the extraction space was closed with no movement of the anterior teeth (Figs 7-10c and 7-10d). Full braces were then placed to commence aligning the remaining teeth and permit root uprighting on the second molar. Use of the miniscrew maintained the canine relationship, thereby preventing an asymmetry from developing in this case.

Inappropriate removal of a tooth can result in an asymmetry that was not originally present. The patient in Fig 7-11 had a blocked-out maxillary right premolar removed as a child, which resulted in a reasonable alignment but also created a Class III subdivision malocclusion with the maxillary midline skewed to the right side. In this case, treatment would involve either extraction of three other teeth to match or the reopening of the space for prosthetic replacement, which was the option chosen by the patient.
Accelerated Orthodontic Tooth Movement

Surgical-Assisted Approach

Surgical-assisted accelerated orthodontic tooth movement is currently the most effective technique experimentally and clinically in accelerating orthodontic tooth movement. This approach includes the techniques of rapid canine retraction through distraction of the PDL,91–95 rapid canine retraction through distraction of the dentoalveolus,96–98 corticotomy-assisted rapid orthodontic tooth movement,99,100 and corticision.101

Rapid canine retraction through distraction of the PDL

This technique is beneficial in treating adult patients, for whom treatment duration may be a deciding factor toward the acceptance of treatment. The rate of orthodontic tooth movement in adults, particularly in the beginning of treatment, is slower than in adolescents.102–104 Two basic components, the alveolar bone and PDL, are encountered during orthodontic tooth movement and affect its rate based on factors such as cellular activity,105,106 mechanical strength of the PDL,107 and bony resistance of alveolar bone.108–110 In the initial stage of tooth movement, Young’s modulus (stiffness) of the PDL is higher in adults than in adolescents,102–104 and this might produce a reduction in the biologic response of the PDL, leading to a delay in the early stage of tooth movement.105 However, Young’s modulus decreases markedly 4 to 7 days after application of orthodontic force and does not last through the entire period of orthodontic tooth movement.111 The rate of tooth movement is shown to depend on the state of alveolar bone resistance, and it is faster in alveolar bone with loose bone trabeculae.108–110,112

Mechanism

By incorporating a surgical procedure on the interseptal bone complex is transported distally inside of the extraction socket. On the tension side, it is a distraction of the PDL followed by osteogenesis and ossification.25

Clinical and surgical procedures

Bonding and banding are performed before extraction of the first premolars. The first molars and second premolars are the anchor units. A triple tube is welded on the buccal side of the canine band and the molar band. No archwire or active appliance is placed on the anchor units before extraction, but a segment of Ni-Ti archwire is placed in the anterior teeth for the initial alignment and activation of the periodontal cells. The period of predistraction preparation is 1 to 2 months.

At the time of the first premolar extractions, surgery is performed with surgical burs to undermine and reduce the thickness of the interseptal bone distal to the canine. The surgery is then performed inside the extraction socket of the first premolar without a mucoperiosteal flap and osteotomy. The length of the canine can be either obtained directly from cone beam computed tomography (CBCT) or estimated by applying the ratio of the premolar length (which can be measured after extraction) to the canine length on the periapical film.

The socket of the first premolar is deepened to the same depth as that of the canine with a 4-mm carbide surgical round bur (Figs 13-3a and 13-3b). Then a cylinder carbide surgical bur is used to reduce the thickness of the interseptal bone distal to the canine. This procedure is critical to the distraction results. The interseptal bone is better reduced to 1.0 to 1.5 mm in thickness. The last step is to undermine the interseptal bone distal to the canine. A 1-mm carbide fissure bur is used to make two vertical grooves, running from the socket bottom to the alveolar crest, on the mesiobuccal and mesiolingual corners inside the extraction socket. These two vertical grooves extend and join obliquely toward the base of the interseptal bone (Figs 13-3c and 13-3d).

A custom-made intraoral distraction device (Fig 13-4) is delivered immediately after the extraction and surgical procedures. It is activated 0.5 mm/day right after the surgery until the canine is distracted into the desired position (Fig 13-5). Patients are seen once a week during the distraction procedure.
Fig 13-3 Schematic illustrations of the surgical procedure for undermining the interseptal bone distal to the canine in rapid canine retraction through distraction of the PDL. *(a and b) The socket of the first premolar is deepened to the same depth as that of the canine with a 4-mm carbide surgical round bur. *(c and d) A 1-mm carbide fissure bur is used to make two vertical grooves, running from the socket bottom to the alveolar crest, on the mesiobuccal and mesiolingual corners inside the extraction socket, and these two vertical grooves extend and join obliquely toward the base of the interseptal bone.*

Fig 13-4 The intraoral distraction device for rapid canine retraction through distraction of the PDL.

Fig 13-5 The clinical progress of maxillary rapid canine retraction through distraction of the PDL in a 23-year-old woman. The canine retraction was completed in 3 weeks. *(a and b) Before distraction. *(c and d) After 2 weeks of distraction. *(e and f) After 3 weeks of distraction.*
Absolute anchorage, 107
Accelerated orthodontic tooth movement
 baseline bone metabolism effects on, 193
 biomechanical approach for, 179–180
 bone density effects on, 193
 bone metabolism–density guided orthodontics, 193–194
 direct electric current stimulation for, 180, 180f
 low-level laser therapy for, 180–181
 overview of, 179
 pharmacologic approach for, 181–183
 physiologic approach for, 180–181
 prostaglandins for, 181–182
 relaxin for, 182–183
 self-ligating bracket system for, 179–180
 submucosal injection of platelet-rich plasma for, 191–193, 192f
 surgical-assisted approaches for
corticision, 189f–190f, 189–191
 rapid canine retraction, 183–186, 183f–186f
 selective alveolar decortication, 186–189, 187f
Acid etching
description of, 17–18
 enamel, 21–22
 hydrofluoric, 20–21
 microetching before, 20
Active ligatures, 50
Active self-ligating brackets, 179
Adhesives
 bond strength of, 17, 18f
 fillers in, 24
 fluoride-releasing, 22
 light-cured, 23f, 24–25
 selection of, 17
Air abrasion, 20
Air embolus/emphysema, 121
Alveolar bone density, 193
Anchorage
 absolute, 107
 bicortical, 111
 direct, 112, 112f
 in extraction treatment, 49–50
 history of, 107
 indirect, 112, 113f–117f
 nomenclature associated with, 108
 options for, 107
 orthodontically induced inflammatory root resorption affected by, 141
 temporary skeletal anchorage devices for. See Temporary skeletal anchorage devices.
Angle’s paradigm, 175
Anterior crossbite, 68f–69f, 71, 72f–73f, 76f–77f, 82f–83f
Anterior open bite, 122–123, 190f, 191
Anterior positioning appliance, 162
Arch crowding, 78f–79f
Arch expansion. See also Mandibular arch.
 limits of, 12f
 maxillary, 10–13, 12f
Arch length, 14
Arch perimeter, 167–168
Archwire, 41–43
Articulators, 161–162
Asymmetries, midline. See Midline asymmetries.
Austenitic wires
 nickel-titanium, 35, 38
 stainless steel, 33–34
Baseline bone metabolism, 193
Begg appliances, 140
Behavioral therapies, 164
Beta-titanium orthodontic wires, 32, 40–41
Bicortical anchorage, 111
Biocatalytic fuel cell, 180, 180f
Biopsychosocial model, 158t, 162
Bleached enamel, bonding to, 19–20
Blue light, 25–26
Bonded expansion appliance, 67
Bonding. See also Adhesives.
 air abrasion before, 20
 to bleached enamel, 19–20
 to ceramic, 20–21
 enamel preparation for, 20
 failure of, 25
 history of, 17
 indirect, 23
 microetching before, 20
 to porcelain, 20–21
 pumice prophylaxis before, 18, 20
 saliva contamination avoidance during, 19
Bone density, 193
Bone metabolism–density guided orthodontics, 193–194
Brackets
 canine retraction using, 49, 49f
 gingivally offset, 22
 self-ligating, 179–180
Buccal alveolus, maxillary, 111
Canine(s)
 palatally displaced. See Palatally displaced canines.
 palatally impacted. See Palatally impacted canines.
tie-backs, 47
Canine retraction. See also En-masse retraction.
 Class II malocclusion treated with, 47, 48f, 49
 rapid
 through dentoalveolus distraction, 184–186
 through periodontal ligament distraction, 183f, 183–184, 185f
Canine-protected occlusion, 159
Cementoenamel junction, 111
Cementum, in orthodontically induced inflammatory root resorption, 137, 138f
Centric occlusion, 157
Centric relation, 160–161
Ceramics
bonding to, 20–21
types of, 21
Cervical vertebral maturation, 53, 127, 128f
Children
Class III malocclusion in, 64f–66f, 68f–69f
eruption guidance appliances for, 54, 54f
Chin cup therapy, 71, 72f–73f
Chinese nickel-titanium orthodontic wires, 35
Circumferential supracrestal fiberotomy, 168
Class I malocclusion, 63, 116f
Class II malocclusion
early interventions for, 7–10, 52–53
extraction treatment of
anchorage options, 49–50
appointment intervals, 51–52
canine retraction, 47, 48f, 49
canine tie-backs, 47
ten-masse retraction, 47, 48f, 49
premolars, 50
space closure, 50–51
functional appliances for, 7–8, 52–53
maxillary expansion for, 10–13
nonextraction treatment of
molar distalization, 55–58, 56f–57f
overview of, 52
second phase of treatment predictions, 54–55
timing of, 52–55
Class III malocclusion
anteroposterior jaw positions, 62, 62f
craniofacial complex aberrations associated with, 62
dental etiology of, 62, 63f
differential diagnosis of, 61–64
early treatment for
benefits of, 61
indications for, 65
maxillary expansion and partial fixed appliances, 65–66, 65f–66f
objectives of, 65
protraction face mask therapy, 66–71, 68f–69f
nonsurgical treatment of
extraction, 73–77, 79f–77f
nonextraction, 77, 77f–79f
pseudo skeletal, 63
skelatal etiology of, 62–63, 63f
surgical treatment of
mandibular surgery, 82f–83f, 83
maxillary and mandibular surgery, 84f–85f, 85f
maxillary surgery, 80, 80f–81f
presurgical orthodontics, 79
three-dimensional planning, 79
types of, 62, 63f
Clinical decision making, 1
Cobalt-chromium wires, 32, 35
Cochrane Collaboration, 1, 42
Comprehensive early treatment, 8
Cone beam computed tomography
anchorage value of root surface area evaluated using, 193
Class II subdivision midline asymmetry, 90
site evaluation before temporary skeletal anchorage device placement, 111
Conventional etch and prime technique, 18–19
Corticision, 189f–190f, 189–191
Council on Scientific Affairs, 12
Craniofacial sutures, 67
Crossbite
anterior, 68f–69f, 71, 72f–73f, 76f–77f, 82f–83f
posterior, 10–12, 11f, 15, 76f–77f, 82f–83f
Crowding
arch, 78f–79f
arch perimeter decreases as cause of, 167–168
corticision for accelerating tooth alignment in patient with, 190f
E-space for, 13–14, 14t
intercanine width decreases as cause of, 167–168
mandibular incisor, 168–169
maxillary expansion for. See Maxillary expansion.
maxillary midline deviation with, 103
C-terminal telopeptide of type I collagen, 193
Cytokines, 181
D
Decalcification, 21–22, 22f
Dental midline asymmetries. See Midline asymmetries.
Dentoalveolar distraction, rapid canine retraction through, 184–186
Deprogramming appliances, 160–161
Diagnosis, articulators use for, 161–162
direct anchorage, 112, 112f
direct bonding, 17
direct electric current stimulation, 180, 180f
disc displacements, 162
Displacement
maxillary canines, 127. See also Palatally displaced canines.
temporomandibular joint disc, 162
Distalization, molar, 55–58, 56f–57f
Dolichofacial patients, 14
E
Early caries lesions, 21, 22f
Early interventions/treatments
Class II malocclusion, 7–10, 52–53
Class III malocclusion. See Class III malocclusion, early treatment of.
functional appliances for, 7–8, 15
Edgewise appliances, 140
Eicosanoids, 181
Elastic bending stiffness, 32
Elastic modulus, 32, 38, 40
Elastomeric chain, 50
Eligloy wires, 35
Enamel
acid etching of, 21–22
air abrasion of, 20
bleaching of, 19–20
microetching of, 20
Endothelial growth factors, 191
En-masse retractions
description of, 47, 48f, 49
space closure in, 50–51
Eruption guidance appliances, 54
E-space, 13–15, 14f. See also Leeway space.
Etching. See Acid etching.
Evidence categories, 1, 3t
Evidence-based clinical practice, 4–5
Evidence-based dentistry, 1
Evidence-based orthodontics, 4
Extractions
Class II malocclusion treated with. See Class II malocclusion, extraction treatment of.
Class III malocclusion treated with, 73f–77f, 73–77
inappropriate, midline asymmetry caused by, 100f–101f, 101
mandibular incisor, 104, 104f–105f
orthodontically induced inflammatory root resorption affected by, 147
premolar. See Premolar extractions.
primary maxillary canine, 129–130, 132
third molars, 168–170
Extrusive force, 143, 144f
F
Face mask therapy, for Class III malocclusion, 66–71, 68f–69f
Facial sutures, 67
Fiberotomy, circumferential supracrestal, 168
Filled sealers, 22
Fixed appliances. See also specific appliance.
 Class II spring correctors used with, 55, 56f–57f
 functional appliance components mimicked in, 58, 59f
 midline asymmetries treated with, 98f–99f
 partial, for Class III malocclusion, 65–66, 65f–66f
Fixed bonded retainers, 170–171, 171f
Flexural rigidity, 32
Fluoride
 adhesives that release, 22
 nickel-titanium orthodontic wires affected by, 39
 orthodontically induced inflammatory root resorption prevention and, 149–150
Force
 extrusive, 143, 144f
 intermittent versus continuous, 141–142, 142t
 interproximal, 168
 intrusive, 143, 143f
 orthodontically induced inflammatory root resorption affected by, 139, 141–147, 142f–146f, 142t
 tipping, 144f, 145
Full-thickness flaps, 186
Functional appliances
 Class II malocclusion treated with, 7–8, 52–53
 components of, 55
 early treatment using, 7–8, 15, 52
 fixed appliance mimicking of components of, 58, 59f
 myofunctional, 54, 54f
 skeletal maturation determinations, 53
 timing of use, 53
Functional occlusion, 159–160

G
Gingival crevicular fluid, 150
Gingivally offset brackets, 22
Glass-ionomer cement, 22
Goal anterior limit line, 62, 73–75, 77
GRADE approach, 2, 3f
Growth factors, 191

H
Halogen lamps, 24–25
Hawley-type retainers, 171–172, 172f, 174
Headgear
 anchorage use of, 49, 52
 Class II malocclusion treated with, 7–8, 52
 interarch appliances and, 55
 palatally displaced canines treated with, 130, 130f
Hydrofluoric acid etching, 20–21
Hyrax rapid palatal expansion appliance, 70, 75f, 81f

I
Immediate loading, of temporary skeletal anchorage devices, 118–119
Impacted canines. See Palatally impacted canines.
Indirect anchorage, 112, 113f–117f
Indirect bonding, 23
Informed consent, 153
Infrazygomatic crest, 111
Interarch appliances, 55
Intercanine width, 167–168
Internal derangements, 162
Interproximal enameloplasty, 174–175
Interproximal force, 168
Intraoral distraction device, 184, 185f
Intrusive force, 143, 143f

J
Japanese nickel-titanium orthodontic wires, 35–36

L
Lacebacks, 47, 50
Lambert’s law, 24
Lamps, polymerization, 24–26
Laser lights, 24
LED light curing units, 24–26
Leeway space, 13–14, 14t, 54. See also E-space.
Light curing units, 24
Light-cured adhesives
 curing sources for, 24
 degree of cure of, 24–25
 indirect bonding use of, 23f
 LED light curing units for, 24–25
 polymerization initiation in, 24
Lower lingual arch, 14–15
Low-intensity pulsed ultrasound, 151
Low-level laser therapy, 180–181
Meta-analyses, 2, 2t
Microetching, 20
Midline asymmetries
acceptance amount of, 89
Class II subdivisions
cone beam computed tomography study of, 90
definition of, 90
Type 1, 90, 92f–93f, 93–94, 95f
Type 2, 90, 96f–97f, 97
Type 1/Type 2, 98, 98f–99f
Class III subdivisions, 102f–105f, 103–104
inappropriate tooth extractions as cause of, 100f–101f, 101
maxillary canine as cause of, 115f
overview of, 89–90
tooth extractions as cause of, 100f, 101
treatment approaches for
early interventions, 91, 91f–92f
overview of, 90
Midline shifts, 89, 90f
Miniscrew implants, 107
Modulus of resilience, 32
Molar(s)
distalization, 55–58, 56f–57f
intrusion, 123, 123f
third. See Third molars.
Moment of inertia, 32
Nickel-titanium coil springs, for space closure, 50–51, 51f
Nickel-titanium orthodontic wires
austenitic, 35, 38
copper, 37, 39, 43
corrosion of, 39
elastic behavior of, 32
elastic modulus of, 38
fluoride effects on, 39
heating curve for, 39
history of, 35
martensitic, 35, 38
mechanical properties of, 35–36, 36f
nonsuperelastic, 42
superelastic, 35–36, 39, 42–43
surface modification of, 39
surface roughness of, 38
thermoelastic effect of, 38
Nitinol, 35
Nonextraction treatments
Class II malocclusion treated with. See Class II malocclusion, nonextraction treatment of.
Class III malocclusion treated with, 77, 77f–79f
orthodontically induced inflammatory root resorption affected by, 147
Occlusal contacts, 159, 175
Occlusal interference, 159
Occlusal splints, 163, 163f
Orthodontic force. See Force.
Orthodontic wire. See Wire.
Orthodontically induced inflammatory root resorption
animal studies of, 149
apical region predilection of, 142, 148
with Begg appliances, 140
biologic markers of, 150
blood and saliva test for, 150–151
case report of, 151–152, 151f–152f
cementum properties in, 137, 138f
clinical consequences of, 148
craters caused by, 147–148, 148f
definition of, 137
eyearly treatments as risk factor for, 53
with edgewise appliances, 140
extraction protocol effects on, 147
factors that affect
appliances, 140–141
description of, 137, 138b
direction of force, 142–147
effusive force, 143, 144f
force magnitude, 139
interrupted versus continuous force, 141–142, 142t
intrusive force, 143, 143f
rotational force, 146, 146f
tipping force, 144f, 145
tooth movement distance, 139
torque movement, 145, 145f
treatment duration, 139
treatment techniques, 140–141
fluoride effects on, 149–150
gingival crevicular fluid tests, 150
low-intensity pulsed ultrasound effects on, 151
nonextraction protocol effects on, 147
prevention of, 149–152
radiographic monitoring of, 149
repair of, 147–148, 147f–148f
risk reduction for, 149, 153
with sequential aligners, 141
skeletal anchorage effects on, 141
space closure concerns, 50
treatment planning considerations for, 151–152
Osteoprotegerin, 150–151
Osteotomy, 184–185
Overjet correction
alignment and, 55
twin block for, 8, 9f
Palatally displaced canines
cephalometric superimposition of, 131f
definition of, 127
dental anomalies associated with, 128, 129b, 129f
eruption of, 130, 133f
interceptive therapies for
cervical headgear, 130, 130f
description of, 130–131
initiation of, 128
outcome evaluations of, 132–133
primary canine extraction, 129–130, 132
rapid maxillary expansion, 130–133
studies on, 132t
transpalatal arch, 131–132
palatally impacted canine progression of
cervical vertebral maturation stage as predictor of, 127, 128f
description of, 129, 132
prevalence of, 127
risk indicators for, 128
Palatally impacted canines
orthodontic-surgical repositioning of, 133
palatally displaced canine progression to
cervical vertebral maturation stage as predictor of, 127, 128f
description of, 129, 132
"tunnel technique" for, 133–134, 134f
Palate
rapid palatal expander, 10, 70
temporary skeletal anchorage device placement in, 111
Partial fixed appliances, for Class III malocclusion, 65–66, 65f–66f
Passive self-ligating brackets, 179
Patient self-directed therapies, 163–164
Percent degree of cure, 24
Periodontal ligament
- prostaglandin E₂ stimulation of bone deposition in, 181
- rapid canine retraction through distraction of, 183f, 183–184, 185f
Periodontal pockets, 169
Periodontally accelerated osteogenic orthodontics, 186–189, 187f–188f
Phosphoproteins, 150
Piezocision, 189
Pitch, 89
Plasma lamps, 24, 26
Platelet-rich plasma, 191–193, 192f
Platelets, 191
Polymerization
- blue light for, 25–26
- lamps used in, 24–26
- light intensity variation, 23–24
Porcelain
- bonding to, 20–21
- fracture of, 21
- microetching of, 21
Posselt's theory, 161
Posterior crossbite, 10–12, 11f, 15, 76f–77f, 82f–83f
Pre-drilled temporary skeletal anchorage devices, 110–111
Premolar extractions, 175, 184
- Class II malocclusion treated with, 50
Class III malocclusion treated with, 73
Prostaglandins, 181–182
Protraction face mask therapy, for Class III malocclusion, 66–71, 68f–69f
Protrusion, mandibular, 71
Pseudo skeletal class III malocclusion, 63
Pumice, 18, 20
Randomized clinical trials
- Class II malocclusion early treatment, 7–8, 52–53
 description of, 1
 en-masse retraction, 49
 gingivally offset brackets, 22
 Hawley-type retainers, 171–172
 interceptive therapies, 130
 lower lingual arch, 14
 occlusal appliances, 163
 self-etching primers, 18
 third molar extractions, 169
 vacuum formed retainers, 172–174
Range, of orthodontic wires, 32
RANKL. See Receptor activator of nuclear factor kappa B ligand.
Rapid canine retraction
- through dentoalveolus distraction, 184–186
- through periodontal ligament distraction, 183f, 183–184, 185f
Rapid maxillary expansion
description of, 12
- palatally displaced canines treated with, 130–132
Rapid palatal expander, 10, 70
Recapturing of temporomandibular joint discs, 162
Receptor activator of nuclear factor kappa B ligand, 150–151, 194
Recommendations, 2–4, 3f
Rectangular wires, 31, 33
Relaxin, 182–183
Resilience, 32
Retainers
- combined removable and fixed, 174
- fixed bonded, 170–171, 171f
- Hawley-type, 171–172, 172f, 174
- thermoplastic, 170, 172–174, 173f–174f
- vacuum formed, 172–174, 173f–174f
Retention
- fixed bonded retainers for, 170–171, 171f
- Hawley-type retainers for, 171–172, 172f
 overview of, 167
- thermoplastic retainers for, 170, 172–174, 173f–174f
- vacuum formed retainers for, 172–174, 173f–174f
Reviews, 1–2, 2f
Roll, 89
Root parallelism, 175
Root resorption. See Orthodontically induced inflammatory root resorption.
Rotational force, 146, 146f
Round wires, 31, 33
Saliva contamination, 19
Selection bias, 2
Selective alveolar decortication, 186–189, 187f
Self-drilling temporary skeletal anchorage devices, 110–111
Self-etching primers, 18–19
Self-ligating bracket system, 179–180
Sequential aligners, 141
Siamese bracket, 49
Silanation, 21
Silicatization technique, 21
Single wing bracket, 49
Six Elements of Orofacial Harmony, 61, 79
Skeletal maturation, 53, 127, 128f
Space closure
- en-masse retraction, 50–51
- orthodontically induced inflammatory root resorption concerns, 50
 stability of, 175
Springback, 32
Square wires, 31
Stability
- interproximal enameloplasty for, 174–175
- options for, 168, 175
- overview of, 167
Stainless steel wires, 32–34, 34f, 170
Stiffness, of orthodontic wires, 32–33
Strength, of orthodontic wires, 32
Submucosal injection of platelet-rich plasma, for accelerated orthodontic tooth movement, 191–193, 192f
Sulcular releasing incisions, 186, 187f–188f
Superelastic nickel-titanium orthodontic wires, 35–36, 39, 42–43
Supracrestal fiberotomy, circumferential, 168
Systematic reviews
- Class II malocclusion treatments, 7, 52
 description of, 2
Temporary skeletal anchorage devices
air embolus/emphysema caused by, 121
anchorage effectiveness of, 49
angle of insertion, 119
anterior open bite treated with, 122–123
bicortical anchorage, 111
bone overheating caused by, 121
clinical uses of, 122–123
complications of, 120–122
composition of, 109
core beam computed tomography evaluation before placement of, 111
counterindications, 121–122
description of, 4, 107
design of, 109–111, 110f
diameter of, 109
direct anchorage using, 112, 112f
displacement of, 120
factors that affect success of, 118
failure of, 118–119, 122
flutes, 110
fracture of, 121
in hard tissue, 111–112
immediate loading of, 118–119
indication for, 107, 122–123
indirect anchorage using, 112, 113f–117f
insertion angle for, 119
length of, 109
mandibular placement of, 111
maxillary placement sites for, 111
midpalatal, 111, 118
molar intrusion using, 123, 123f
nerve injury caused by, 120–121
nomenclature associated with, 108
orthodontist placement of, 108f, 108–109
palate placement of, 111
pitch of, 110
placement of
by orthodontist, 108f, 108–109
root clearance considerations, 120
technique for, 119–120
pre-drilled, 110–111
removal of, 120
root damage caused by, 120
self-drilling, 109, 110–111
self-taping, 109
sinus perforation of, 121
site selection for, 111–112
skeletal asymmetries treated with, 89
skeletal discrepancies managed with, 122
slippage of, 120
smoking effects on, 122
in soft tissue, 111
soft tissue coverage of, 121, 122f
studies of, 118
thread design of, 109–110, 110f
tip of, 109
torque effects on, 119
types of, 109f, 109–111

Temporomandibular disorders
behavioral therapies for, 164
biopsychosocial model of, 158t, 162
canine-protected occlusion, 159–160
centric relation, 160–161
definition of, 164
deprogramming appliances, 160–161
diagnosis of, 163
evidence-based treatment of, 163–164
gnathologic-prosthodontic view of, 157
management of, 162–164
multifactorial view of, 158
natural history of, 157
orthodontics and, 157–159, 158t
patient self-directed therapies for, 163–164
temporomandibular joint disc internal derangements associated with, 162
temporomandibular joint disc, 162
Terminal hinge axis, 161
Thermoelectric effect, 38
Thermoplastic retainers, 170, 172–174, 173f–174f
Third molar extractions
mandibular incisor relapse as reason for, 168–169
morbidly associated with, 169
Tipping force, 144f, 145
Titanium-molybdenum alloy, 40
TMDs. See Temporomandibular disorders.

Tooth extractions. See Extractions.

Tooth movement, accelerated orthodontic
baseline bone metabolism effects on, 193
biomechanical approach for, 179–180
bone density effects on, 193
bone metabolism–density guided orthodontics, 193–194
direct electric current stimulation for, 180, 180f
low-level laser therapy for, 180–181
overview of, 179
pharmacologic approach for, 181–183
physiologic approach for, 180–181
prostaglandins for, 181–182
relaxin for, 182–183
self-ligating bracket system for, 179–180
submucosal injection of platelet-rich plasma for, 191–193, 192f
surgical-assisted approaches for corticision, 189f–190f, 189–191
rapid canine retraction, 183–186, 183f–186f
selective alveolar decortication, 186–189, 187f

Torque
orthodontically induced inflammatory root resorption affected by, 145, 145f
temporary skeletal anchorage devices affected by, 119

Transforming growth factors, 191
Transpalatal appliance, 123
Transpalatal arches
anchorage use of, 49–50, 52
palatally displaced canines treated with, 131–132
“Tunnel technique,” for palatally impacted canines, 133–134, 134f
Twin block, for overjet correction, 8, 9f

Two-step canine retraction, 47, 49

U
U-shaped wire, 174f
Utility arches, 91f

V
Vacuum formed retainers, 172–174, 173f–174f

W
Weibull analysis, 25
White spots, 21–22, 22f
Wire
beta-titanium, 32, 40–41
biocompatibility of, 31
cobalt-chromium, 32, 35
elastic modulus of, 32
friction properties of, 179
ISO standard for, 32
mechanical properties of, 32
nickel-titanium. See Nickel-titanium orthodontic wires.
properties of, 32–33, 34f
range of, 32
rectangular, 31, 33
round, 31, 33
springback of, 32
square, 31
stainless steel, 32–34, 34f, 170
stiffness of, 32–33
strength of, 32
tension testing of, 32
type of, 32
type 1, 32
type 2, 32
type 3, 32

Y
Yaw, 89
Young’s modulus, 32