Maxillofacial Rehabilitation

Prosthodontic and Surgical Management of
Cancer-Related, Acquired, and Congenital Defects
of the Head and Neck, Third Edition

Edited by

John Beumer III, DDS, MS
Distinguished Professor Emeritus
Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry
Director Emeritus, Residency Program, Maxillofacial Prosthetics
UCLA School of Dentistry
Los Angeles, California

Mark T. Marunick, DDS, MS
Professor, Department of Otolaryngology
Director, Maxillofacial Prosthetics
Karmanos Cancer Institute
Wayne State University School of Medicine
Chief, Dental Service, Detroit Medical Center
Detroit, Michigan
Diplomate, American Board of Prosthodontics

Salvatore J. Esposito, DMD, FICD
Former Chairman
Department of Dentistry
Director, Section of Maxillofacial Prosthetics
Cleveland Clinic Foundation
Associate Professor, University Hospitals
Cleveland, Ohio

Quintessence Publishing Co, Inc
Chicago, Berlin, Tokyo, London, Paris, Milan, Barcelona,
Istanbul, Moscow, New Delhi, Prague, São Paulo, and Warsaw
Table of Contents

Dedication vii

Preface to the Third Edition viii

Preface to the Second Edition x

Contributors xi

1 Oral Management of Patients Treated with Radiation Therapy and/or Chemoradiation 1

2 Rehabilitation of Tongue and Mandibular Defects 61

3 Rehabilitation of Maxillary Defects 155
 John Beumer III / Mark T. Marunick / Neal Garrett / Dennis Rohner / Harry Reintsema / Elliot Abemayor / Renee Penn / Vishad Nabili / Peter Bucher

4 Rehabilitation of Soft Palate Defects 213
 Salvatore J. Esposito / Jana Rieger / John Beumer III

5 Rehabilitation of Facial Defects 255
Rehabilitation of Cleft Lip and Palate and Other Craniofacial Anomalies 315
Arun B. Sharma / Ting Ling Chang / Lawrence E. Brecht / Leonard B. Kaban / Karen Vargervik

Digital Technology in Maxillofacial Rehabilitation 355
John Wolfaardt / Ben King / Richard Bibb / Henk Verdonck / Jan de Cubber / Christoph W. Sensen / Jung Soh

Tissue Engineering of Maxillofacial Tissues 375
Min Lee / Benjamin M. Wu

Psychosocial Perspectives on the Care of Head and Neck Cancer Patients 403
David A. Rapkin / Neal Garrett

Oral Management of Chemotherapy Patients 425
Evelyn M. Chung / Eric C. Sung

Index 441
This textbook represents the culmination of 40 years of patient care, teaching, and research and is dedicated to my father, John Beumer Jr, my mother, Elizabeth Ruth Beumer, and my wife, Janet Lauritsen Beumer, for their continued and devoted support of my work in maxillofacial prosthetics over the span of my professional career.

—John Beumer III

It is with profound gratitude and appreciation that I dedicate this textbook to my parents, Otto and Jean Marunick; to my siblings, John and Kathryn; and to my wife, Robin Edwards Marunick. Their unwavering support in my career development and ongoing encouragement over the years has fostered my dedication in the field of maxillofacial prosthetics. I thank my children, Mark, Piper, and Joel, for their forbearance and understanding during the completion of this project. I also recognize all of my mentors at the various stages of my career.

—Mark T. Marunick

My contribution to this comprehensive textbook must be dedicated to several people. First and foremost, to my wife and partner, Kathleen, the love of my life, for her never-ending support; to our very supportive children, Lisa, Jennifer, and Scott; to my mentors, S. Howard Payne, Ed Mehringer, and Norman Schaaf; and to my parents, Louis and Katherine Esposito, all of whom have been instrumental in making me the person I am. Last but certainly not least, to my good friend John Beumer, who allowed me to affix my name to this book. Clearly, he has been its driving force and without his energy it would never have happened. Thanks, John; you have brought our specialty to new levels with your commitment to patient care, research, education, and again with this outstanding textbook.

—Salvatore J. Esposito
Rehabilitation of patients with disabilities of the head and neck secondary to acquired and congenital defects continues to be a challenging endeavor, requiring close interaction between many health care disciplines. Not so long ago, it was difficult to rehabilitate these patients on a consistent basis. Today, however, it is possible to restore the majority of them to near normal form and function, enabling them to lead useful and productive lives. How has this come to happen? What has changed? In the 1980s, two key technical advances—the introduction of osseointegrated implants and free vascularized flaps—were made, but in recent times the most significant changes are the result of improved collaboration between prosthodontic and medical researchers and clinicians. Many challenges remain; for instance, we have yet to find an effective means of minimizing the very significant long-term side effects of chemoradiation therapy. Yet, for the most part, we have made great strides in the last 15 years.

Nevertheless, the pace of change in the rehabilitation of oral and facial defects, given the technical advances made in reconstructive surgery, maxillofacial prosthetics, and dental care of the irradiated patient, has been far too slow. Changes in the quality of care would occur much more rapidly if cancer therapists would employ a truly multidisciplinary approach to clinical care and research. For example, free tissue transfers have been used throughout the world for the last 20 years to restore bony defects of the mandible, but still far too many surgeons fail to understand that it is equally important to restore the bulk and contour of the tongue if the oral functions of speech, mastication, and control of saliva are to be restored. Hence, we appeal to our readers to work with their colleagues toward a multidisciplinary approach to cancer care and to encourage and participate in multidisciplinary research efforts. Surgeons, radiation oncologists, and medical oncologists must be made to appreciate the advantages of making their dental colleagues equal members of the cancer therapy, rehabilitation, and research team. Treatment strategies developed for head and neck cancer patients must always consider the need to maintain or restore oral functions and oral health. No longer should we hear the cliché so often echoed in the past, and even today, in reference to one of our patients: “The cure was worse than the disease.”

The prosthodontist is the undisputed expert on oral function and the person most capable of restoring it when it is lost, but to be an effective member of this multidisciplinary effort he or she must not just understand the prosthodontist’s role but those of the other team members as well. The prosthodontist must understand the issues important to the cancer surgeon, the reconstructive surgeon, the radiation oncologist, and the medical oncologist in order to make intelligent and practical contributions to the care of these patients. Indeed, all members of the treatment and rehabilitation team must be familiar with the expertise of the other team members so that treatment can be smoothly integrated. And so, in keeping with the multidisciplinary nature of this field, we have attempted to provide insights into the etiologies and procedures for treating defects associated with the maxilla, mandible, and facial structures, and related disabilities, as well as the procedures for rehabilitation.

Readers familiar with the second edition will note that three chapters, “Maxillofacial Trauma,” “Cranial Implants,” and “Miscellaneous Prostheses,” have been deleted, although pertinent portions of these chapters have been incorporated into existing chapters. Two new chapters—“Digital Technology in Maxillofacial Rehabilitation” and “Tissue Engineering of Maxillofacial Tissues”—have been added, reflecting the impact that computer-aided design/computer-assisted manufacturing and molecular biology will have on our discipline. In addition, the psychosocial portion of the book (formerly Chapters 1 and 2) has been completely reconceived and condensed into a single chapter (Chapter 9). We are especially pleased by the efforts made by David A. Rapkin and Neal Garrett for this chapter, which represents a very significant contribution. All chapters devoted to the prosthetic restoration of acquired oral and facial defects have undergone significant revision, reflecting the knowledge and
sophistication we have gained over the last few years in the use of osseointegrated implants, free vascularized flaps, and CAD/CAM. A new section devoted to the use of implants in growing children has been added to Chapter 6, “Rehabilitation of Cleft Lip and Palate and Other Craniofacial Anomalies.” Chapter 1, “Oral Management of Patients Treated with Radiation Therapy and/or Chemoradiation,” has been completely rewritten and reflects the knowledge gained in the last 15 years regarding the dental management of the irradiated patient.

Acknowledgments

We would like to thank our many contributors. At their institutions they have embraced and through their contributions helped us to expand our vision of multidisciplinary care. We would also like to take this opportunity to pay tribute to the contributions made to this discipline and to this text by Professor Thomas A. Curtis. Many of his ideas, treatment philosophies, and words of wisdom remain. He has had a profound influence on the lives and the careers of many colleagues and mentored several who have made major contributions to this book.

The principal editor would like to take this opportunity to personally thank his mentors—Dr Sol Silverman Jr, Professor of Oral Medicine, University of California, San Francisco; Dr Thomas A. Curtis, Professor of Prosthodontics, University of California, San Francisco; and Dr F. J. Kratochvil, Professor of Prosthodontics, UCLA. These individuals are rightly considered giants in their respective disciplines. Their commitment to and enthusiasm for their work and their pursuit of excellence have been inspiring to me and many others. They gave me the basic tools that have permitted me to build bridges across professional barriers and forge the close professional relationships necessary for true progress in this complex and fascinating field.

The authors of Chapter 7, “Digital Technology in Maxillofacial Rehabilitation,” wish to dedicate it to Dr Henk Verdonck of the Netherlands. Dr Verdonck was one of the pioneers of the application of digital technologies to maxillofacial prosthodontics and made a major contribution to the chapter. His untimely death has deprived our specialty of an immensely creative and innovative professional, and we will miss his contributions to our discipline.

Finally, we would like to thank Brian Lozano, senior artist, UCLA School of Dentistry. He has meticulously redrawn all of the previous illustrations and added several new ones.
Rehabilitation of patients with disabilities of the head and neck secondary to acquired and congenital defects is a difficult task, requiring a close interaction among a number of health science disciplines. This book seeks to place the various disciplines in proper perspective in the rehabilitation process. Since the dentist is the primary person involved in many facets of care, much of this book is directed toward the profession of dentistry. However, because of the multidisciplinary nature of this topic, we believe the material will also have relevance for surgeons, radiation therapists, social workers, and other health science professionals.

The disabilities range from minor cosmetic discrepancies to a major functional disability combined with cosmetic disfigurement. The deliverer of therapy must understand posttreatment sequelae and be cognizant of the variations in therapy that significantly improve the process of rehabilitation. In addition to being experts in their respective fields of responsibility, all members of the treatment and rehabilitation team must be familiar with the expertise of the other members of the team so that therapy and rehabilitation may be smoothly integrated. In keeping with the multidisciplinary nature of this topic, we have attempted to give the reader insights into the etiologies and treatment procedures for defects associated with the mandible, maxilla, soft palate, and facial structures, as well as the associated disabilities and the procedures for rehabilitation.

Writing a text which attempts to define a diverse subspecialty, such as maxillofacial prosthetics, is a daunting task. One feels as if a first edition is never really completed. One simply exhausts his or her allotted time and energy, concluding the effort with the hope that a second edition will correct the known limitations. For these reasons, an old adage in literary parlance states that a first edition should never be published. However, a subsequent edition provides another opportunity to define the subject. Readers familiar with the original edition will note that 2 chapters, “Prosthetic Implications of Oral and Maxillofacial Surgery” and “Reconstructive Preprosthetic Surgery,” have been deleted, but portions of these chapters survive in new or existing chapters. Two new chapters, “Behavioral and Psychosocial Issues in Head and Neck Cancer” and “Maxillofacial Trauma,” have been added, broadening the scope of the text. Moreover, the chapter, “Cleft Lip and Palate,” has been completely rewritten, while others (eg, “Acquired Defects of the Mandible” and “Restoration of Facial Defects”) have received major revisions, reflecting the changes in care resulting from the use of free vascularized flaps and osseointegrated implants. The remaining chapters have all been revised and updated to include newer techniques, such as the use of osseointegrated dental implants, 3-D image processing and stereolithography, and so on.

We would like to thank all of our many contributors. They helped us to expand our multidisciplinary vision and understand our role in the rehabilitation of our mutual patients. Without them, this book would certainly not have been possible. Also, we would like to acknowledge the contribution of David Firtell, who chose not to participate as a third editor for this edition, but whose words and thoughts remain from past contributions. By the same token, we welcome Mark Marunick as the third editor and contributor.

Writing this book required the efforts of many dedicated individuals, and it is indeed difficult to identify them all. Several persons stand out, however, and the principal editor would like to take this opportunity to thank those individuals whose counsel and aid during his professional development eventually enabled him to undertake this endeavor: Thomas A. Curtis, Sol Silverman, Jr, and F. J. Kratochvil.

We all wish to thank Mickey Stern for the enormous task of typing the final manuscript, Irene Petravicius for her wonderful illustrations, and Walter Livengood for his superb editorial effort.

John Beumer III
Thomas A. Curtis
Mark T. Marunick
Elliot Abemayor, MD, PhD
Professor and Vice Chief
Division of Head and Neck Surgery
UCLA School of Medicine
Los Angeles, California
• Chapter 2: Secondary section author, “Treatment of mandibular tumors” (pages 75–87)
• Chapter 3: Secondary section author, “Diagnosis and treatment of maxillary tumors” (pages 157–161)

Tomomi Baba, CDT
Dental Technician and Anaplastologist
Maxillofacial Clinic
Center for the Health Sciences at UCLA
Los Angeles, California
• Chapter 5: Secondary section author, “Processing” (pages 284–285)

John Beumer III, DDS, MS
Distinguished Professor Emeritus
Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry
Director Emeritus, Residency Program, Maxillofacial Prosthetics
UCLA School of Dentistry
Los Angeles, California
• Chapter 1: Primary author
• Chapter 2: Primary author
• Chapter 3: Primary author
• Chapter 4: Secondary author
• Chapter 5: Primary author

Richard Bibb, PhD
Senior Lecturer
Department of Design and Technology
Loughborough University
Loughborough, Leicestershire
United Kingdom
• Chapter 7: Secondary author

Lawrence E. Brecht, DDS
Director of Craniofacial Prosthetics
NYU-Langone Medical Center
Institute of Reconstructive Plastic Surgery
Director of Maxillofacial Prosthetics
NYU College of Dentistry
New York, New York
• Chapter 6: Primary section author, “Nasalveolar molding” (pages 324–327)

Peter Bucher, CDT
Dental Technician and Anaplastologist
Craniofacial Center
Hirslanden Medical Center
Aarau, Switzerland
• Chapter 3: Secondary section author, “Combined surgical-prosthetic rehabilitation” (pages 205–210)

Ting Ling Chang, BDS
Clinical Professor and Chair
Section of Removable Prosthodontics
Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry
UCLA School of Dentistry
Los Angeles, California
• Chapter 6: Secondary author

Henry M. Cherrick, DDS, MSD
Professor and Dean Emeritus
UCLA School of Dentistry
Los Angeles, California
• Chapter 5: Secondary section author, “Neoplasms of the facial area” (pages 256–260)

Evelyn M. Chung, DDS
Associate Clinical Professor
Section of Hospital Dentistry
Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry
UCLA School of Dentistry
Los Angeles, California
• Chapter 10: Primary author

Donald A. Curtis, DMD
Professor
Department of Preventive and Restorative Dental Sciences
University of California, San Francisco, School of Dentistry
San Francisco, California
• Chapter 2: Primary section author, “Mastication” (pages 104–109)

Jan de Cubber, CDT
Maxillofacial Technologist
Maastricht University Medical Center
Maastricht, The Netherlands
• Chapter 5: Secondary section author, “Rehabilitation of ocular defects (pages 300–309)
• Chapter 7: Secondary author
Salvatore J. Esposito, DMD, FICD
Former Chairman
Department of Dentistry
Director, Section of Maxillofacial Prosthetics
Cleveland Clinic Foundation
Associate Professor, University Hospitals
Cleveland, Ohio
• Chapter 4: Primary author

Lewis R. Eversole, DDS, MSD
Former Professor and Chair
Section of Diagnostic Sciences
UCLA School of Dentistry
Los Angeles, California
• Chapter 5: Primary section author, "Neoplasms of the facial area" (pages 256–260)

Earl Freymiller, DMD
Clinical Professor and Chair
Section of Oral and Maxillofacial Surgery
UCLA School of Dentistry
Los Angeles, California
• Chapter 2: Secondary section author, "Surgical reconstruction" (pages 95–103)

Neal Garrett, PhD
Professor and Chair
Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry
The Weintraub Center for Reconstructive Biotechnology
UCLA School of Dentistry
Los Angeles, California
• Chapter 2: Primary section author, "Psychosocial impacts and quality of life" (pages 146–148)
• Chapter 3: Primary section author, "Evaluation of maxillary obturator prostheses" (pages 202–205)
• Chapter 9: Secondary author

Harold J. Gulbransen, DDS
Lecturer
Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry
UCLA School of Dentistry
Los Angeles, California
• Chapter 1: Primary section author, "Use of prosthodontic stents and splints during therapy" (pages 10–14)

Alan Hannam, PhD
Professor
Department of Oral Health Sciences
Faculty of Dentistry
The University of British Columbia
Vancouver, British Columbia
Canada
• Chapter 2: Secondary section author, "Mastication" (pages 104–109)

Leonard B. Kaban, DMD, MD
Walter C. Guaralnick Professor of Oral and Maxillofacial Surgery
Harvard School of Dental Medicine
Chief of Service
Department of Oral and Maxillofacial Surgery
Massachusetts General Hospital
Boston, Massachusetts
• Chapter 6: Primary section author, "Bone grafting" (pages 331–332)

Robert Kagan, MD
Chief Emeritus
Radiation Oncology, Southern California Kaiser Permanente
Clinical Professor
Division of Radiation Oncology
UCLA School of Medicine
Los Angeles, California
• Chapter 1: Primary section author, "Principles of radiation therapy" (pages 2–9)

Sudarat Kiat-amnuay, DDS, MS
Associate Professor
University of Texas Dental Branch at Houston
Houston, Texas
• Chapter 5: Secondary section author, "Prosthetic materials" (pages 260–271)

Ben King, BDes
Industrial Designer
Institute for Reconstructive Sciences in Medicine
Faculty of Medicine and Dentistry
University of Alberta/Covenant Health/Alberta Health Services
Misericordia Hospital
Edmonton, Alberta
Canada
• Chapter 7: Secondary author

Min Lee, PhD
Assistant Professor
Section of Biomaterials
Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry
UCLA School of Dentistry
Los Angeles, California
• Chapter 8: Primary author

Karl M. Lyons, BDS, MDS
Senior Lecturer
Department of Oral Rehabilitation
School of Dentistry
University of Otago
Dunedin, New Zealand
• Chapter 1: Secondary author
Jana Rieger, PhD
Associate Professor
Department of Speech Pathology and Audiology
Program Director, Functional Outcomes
Institute for Reconstructive Sciences in Medicine
University of Alberta
Edmonton, Alberta
Canada
• Chapter 2: Primary section author, "Speech" (pages 114–118)
• Chapter 4: Secondary author

Harry Reintsema, DDS, PhD
Maxillofacial Prosthodontist
Department of Oral Maxillofacial Surgery and Maxillofacial Prosthetics
University Medical Center Groningen
Groningen, The Netherlands
• Chapter 3: Secondary section author, "Combined surgical-prosthetic rehabilitation" (pages 205–210)

Dennis Rohner, MD, DMD
Associate Professor
Senior Consultant
Craniofacial Center
Hirslanden Medical Center
Aarau, Switzerland
• Chapter 3: Primary section author, "Combined surgical-prosthetic rehabilitation" (pages 205–210)

Eleni Roumanas, DDS
Professor and Director
Residency in Prosthodontics
Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry
UCLA School of Dentistry
Los Angeles, California
• Chapter 2: Secondary author
• Chapter 5: Secondary author

Christoph W. Sensen, Dr rer nat, Dipl-Biol
Professor
Sun Center of Excellence for Visual Genomics
Department of Biochemistry and Molecular Biology
Faculty of Medicine
University of Calgary
Calgary, Alberta
Canada
• Chapter 7: Secondary author

Sol Silverman, Jr, DDS, MS
Professor Emeritus of Oral Medicine
School of Dentistry
University of California, San Francisco
San Francisco, California
• Chapter 2: Primary section author, "Epidemiology of oral cancer” and "Etiology and predisposing factors” (pages 62–75)

Arun B. Sharma, BDS, MSc
Clinical Professor
Director, Maxillofacial Prosthetic Clinic
Department of Preventive and Restorative Dentistry
School of Dentistry
University of California, San Francisco
San Francisco, California
• Chapter 6: Primary author

Jung Soh, PhD
Research Associate
Sun Center of Excellence for Visual Genomics
Department of Biochemistry and Molecular Biology
Faculty of Medicine
University of Calgary
Calgary, Alberta
• Chapter 7: Secondary author

Eric C. Sung, DDS
Clinical Professor
Chair, Section of Hospital Dentistry
Director, Hospital-Based General Practice Residency
Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry
UCLA School of Dentistry
Los Angeles, California
• Chapter 1: Secondary author
• Chapter 10: Secondary author

G. van Dijk, CDT
Laboratory for Maxillofacial Prosthetics
University Medical Center Groningen
Groningen, The Netherlands
• Chapter 5: Secondary section author, "Rehabilitation of ocular defects” (pages 300–309)

Robert van Oort, DDS, PhD
Maxillofacial Prosthodontist
Department of Oral Maxillofacial Surgery and Maxillofacial Prosthetics
University Medical Center Groningen
Groningen, The Netherlands
• Chapter 5: Primary section author, "Rehabilitation of ocular defects” (pages 300–309)

Karen Vargervik, DDS
Larry L. Hillbion Professor in Craniofacial Anomalies
Director, Center for Craniofacial Anomalies
Division of Orthodontics
School of Dentistry
University of California, San Francisco
San Francisco, California
• Chapter 6: Primary section author, "Growth and development” and "Orthodontic treatment” (pages 328–329)
Bhavani Venkatachalam, DMD, MS
Former Assistant Clinical Professor
Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry
UCLA School of Dentistry
Los Angeles, California
• Chapter 1: Secondary author

Henk Verdonck, DDS, PhD
Maxillofacial Prosthodontist
University Hospital, Maastricht
Maastricht, The Netherlands
• Chapter 7: Secondary author

John Wolfaardt, BDS, MDent (Prosthodontics), PhD
Professor and Director
Institute for Reconstructive Sciences in Medicine
Faculty of Medicine and Dentistry
University of Alberta
Edmonton, Alberta
Canada
• Chapter 7: Primary author

Benjamin M. Wu, DDS, PhD
Professor
Chair of Bioengineering
UCLA
Los Angeles, California
• Chapter 8: Secondary author

Guofeng Wu, DDS, PhD
Co-Director, CAD/CAM Lab for Maxillofacial Rehabilitation
Department of Prosthodontics
Fourth Military Medical University
Xi’an, China
• Chapter 5: Secondary section author, "Computer-aided design and manufacturing" (page 299)

Yi-min Zhao, DDS, PhD
Distinguished Professor
Department of Prosthodontics
Dean, School of Dentistry
Fourth Military Medical University
Xi’an, China
• Chapter 5: Primary section author, "Computer-aided design and manufacturing" (page 299)
Chapter 2

Rehabilitation of Tongue and Mandibular Defects

The management of malignant tumors associated with the tongue, floor of the mouth, mandible, and adjacent structures represents a difficult challenge for the surgeon, radiation oncologist, and prosthodontist in terms of both control of the primary disease and rehabilitation following treatment. The most common intraoral sites for squamous cell carcinoma (SCC) are the lateral margin of the tongue and the floor of the mouth. Both locations predispose the mandible to tumor invasion, often necessitating its resection in conjunction with large portions of the tongue, the floor of the mouth, and the regional lymphatic system.

Disabilities resulting from such resections may include impaired speech articulation, difficulty in swallowing, problems with mastication, altered mandibular movements, compromised control of salivary secretions, and severe cosmetic disfigurement. In the past 20 years, free tissue transfers and dental implants have resulted in considerable improvement in the form and function of these patients. The impact of free tissue transfers in reconstruction of the tongue and mandible and osseointegrated implants for retaining prostheses has been particularly notable. With these new surgical and prosthodontic methods, more patients with defects of the tongue and mandible can have their appearance and function restored to levels that approach their presurgical condition. These rehabilitative efforts are more complex and require the efforts of a sophisticated, well-trained, multidisciplinary team of oncologic surgeons, maxillofacial prosthodontists, reconstructive surgeons, speech therapists, social workers, and others.

Although available, osseous and soft tissue free flaps and osseointegrated implants for various reasons may not always be indicated or possible. In such instances, rehabilitation efforts will be challenged and functional outcomes are frequently diminished.

Treatment modalities for malignant neoplasms that invade or approximate the mandible or contiguous soft tissues impact the jaw, which can least afford to be compromised. Many vital and life-sustaining functions evolve around the moveable mandible, tongue, and adjacent structures. A partially resected tongue compounds the problem, because it will not function like a normal tongue. A mandible reconstructed with an osseous free flap can demonstrate relatively normal mandibular movements and appearance but altered sensory status may still result in less than optimal function. Radiation therapy also has a significant impact on mandibular structures. The functional movements and occlusal proprioception of a mandible that has lost bony continuity are entirely different from normal mandibular movements and occlusion.

It is unrealistic to discuss functional impairment without reference to the psychic and social factors that affect patients with mandibular resections. Distortions in self-image, inability to communicate, and altered family and vocational roles require the reconstruction of psychic systems to handle these new demands. Those involved in rehabilitation of these patients must be sensitive to the emotional trauma precipitated by cancer and its treatment.

Tongue function is dramatically compromised unless the bulk is restored with a flap (Figs 2-28a and 2-28b). Tongue function is less affected if the resected portion is restored with a free flap. Myocutaneous flaps restore lost bulk and prevent the severe mandibular deviation that occurs in patients whose defects are closed primarily. The residual tongue and flap are centered beneath the palatal structures, permitting the reconstructed tongue to articulate speech phonemes more effectively. Myocutaneous flaps, however, become scarred and immobile and thus limit the mobility of the residual tongue, and speech articulation may remain poor (see Fig 2-11).

In contrast, most patients whose tongues are reconstructed with free flaps have the potential of achieving nearly normal speech. The flap restores lost bulk, as does the myocutaneous flap, but it does not become heavily scarred and immobile. Thus, the mobility of the residual tongue is improved dramatically. With speech therapy, the patient learns to manipulate the residual tongue musculature and flap quite effectively, to the point that the quality of speech articulation approaches normal limits in many patients (Fig 2-28c).

Like speech, the degree to which deglutition is adversely affected depends on the extent of surgery and the method of closure. In normal patients the tongue, in concert with the soft palate, directs the bolus posteriorly to the oral pharynx with a synergistic squeezing action. This act is performed with far less efficiency in patients with tongue resections, although eventually most patients learn to swallow quite acceptably. Patients subjected to primary closure experience the most difficulty swallowing because they cannot elevate the tongue sufficiently to propel the food bolus posteriorly. Patients whose tongue bulk is restored with free flaps experience the least difficulty and many are able to swallow in a nearly normal fashion. (The physiology of oral function following resection will be discussed in detail later in the chapter.)

In patients whose wound is closed primarily following surgical resection, if mandibular continuity is not restored, the remaining mandibular segment will retract and deviate toward the surgical side at the vertical dimension of rest (Fig 2-29). When the mouth is opened, this deviation increases, leading to an angular pathway of opening and closing. It is not uncommon to note 1- to 2-cm deviation laterally and 2- to 4-mm retraction posterior to the chin point during maximum opening. When the incisal point of the mandible is traced, this diagonal pathway of closure is obvious. During mastication, the entire envelope of motion occurs on the surgical defect side (Fig 2-30). Some patients are unable to effect lateral movements toward the nondefect side and are incapable of making protrusive movements. Patients whose resections are closed with a myocutaneous flap or a free tissue transfer demonstrate much less deviation, regardless of whether or not mandibular continuity is restored.

In patients whose mandibular continuity has not been restored, loss of the proprioceptive sense of occlusion leads to uncoordinated, imprecise movements of the mandible. In addition, the absence of the attachments of the muscles of mastication on the surgical side results in a significant rotation of the mandible on forceful closure. When viewed from the frontal plane, teeth on the surgical side of the mandible move away from the opposing maxillary teeth after initial contact on the nonsurgical side has been established. As the force of closure is increased, the remaining mandible actually rotates through the frontal plane, leading to the term frontal plane rotation (Fig 2-31). This factor, with the addition of impaired tongue function, may totally compromise mastication in some patients. Frontal plane rotation is observed in most patients with lateral mandibular discontinuity defects, regardless of whether the site has been closed primarily or with a myocutaneous or a free flap.

If mandibular continuity is not restored, the severity and permanence of mandibular deviation are highly variable and are dependent on a number of complex factors, such as the amount of soft and hard tissue resected, the method of closure, and so forth. Patients whose wounds are closed with a myocutaneous or free flap...
flap soon attain an acceptable interocclusal relationship, without adjunctive therapy, although some patients whose wounds are closed primarily are never able to achieve an appropriate and stable interocclusal position.

When a usable occlusal relationship is achieved, the mandibular teeth often occlude distal to the presurgical pattern of cuspal interdigitation. On the nonsurgical side, the buccal slopes of the mandibular buccal cusps function with the central fossae of the maxillary teeth because of mandibular rotation in the frontal plane (see Fig 2-31c). Scar contracture, tight wound closure, and muscle imbalances secondary to the primary resection all contribute to mandibular deviation. Mandibular deviation is most severe following primary closure of base of the tongue lesion.

Control of saliva is profoundly affected by most resections of the tongue and mandible. These resections obliterate the lingual and buccal sulci and consequently a means of collecting and channeling secretions posteriorly no longer exists. In addition, the motor and sensory innervation of the lower lip on the resected side is often lost, adversely affecting oral competency and preventing the patient from detecting secretions escaping from the mouth. Impaired sensory innervation and poor tongue control and mobility also contribute to poor control of saliva. Individuals with unimpaired tongue function are capable of identifying escaping secretions and use the tongue to direct these secretions posteriorly to be swallowed. With compromised tongue function, this manipulation often is impossible.

Drooling is compounded on the defect side by the drooping of the corner of the mouth. Cracking and large fissures develop, and these may become infected with *Candida albicans* (Fig 2-32).

Most patients who submit to lateral resections of the mandible present with varying degrees of trismus following surgery. Trismus is most severe in those patients requiring preoperative or postoperative radiation therapy and is more likely if the patient receives chemoradiation. Early initiation of a well-organized mandibular...
some instances preoperative, contouring of the osseous portion of the free flap. A surgical stent is used to properly position residual mandibular fragments and correctly align the graft segment (Fig 2-51).

Fibula. The composite fibular flap is nourished by the peroneal (fibular) vessels (Fig 2-52). The flap may be transferred with bone alone or with skin and muscle (Fig 2-53). The composite flap may include up to 25 cm of bone, more than 250 cm of lateral leg skin surface, a portion of the soleus muscle, and the entire flexor hallucis longus muscle if needed for complex defects.

The bone’s length and extensive periosteal blood supply allows the reconstruction of the entire mandible. Multiple osteotomies may be performed to replicate the contour of the resected mandible without risk of devascularizing the bone segments. At least 6 cm of bone is left proximally and distally to maintain respective joint stability. The fibula’s cortical nature and thickness make it an excellent recipient of osseointegrated implants, and the success rates appear to be quite good.

Either leg may be utilized as a donor site, although the choice may be determined by the vascularity of the lower extremity, the side, location, and extent of the tumor resection, and the reconstructive surgeon’s preference. When the ipsilateral neck is vessel depleted, the pedicle may be lengthened by using the distal bone and dissecting the periosteum. The skin island is centered over these vessels.

The skin is based on septocutaneous perforators, emanating through the posterior crural septum from the peroneal vasculature. The cutaneous portion of the flap may be used for intraoral, external, and combined defects. The flexor hallucis longus
muscle is routinely harvested with the flap. Its position along the inferior border of the bone make it an ideal substitute for the submental and submandibular soft tissues and it acts as an additional partition between the oral cavity and neck. Harvesting a 2-cm cuff of flexor hallucis and soleus also can enhance the vascular supply to the skin paddle by preserving musculocutaneous perforators traversing this location.

The composite fibular flap is the preferred donor site for most complex orofacial-mandibular defects. For defects of the lateral mandible that do not involve a significant amount of oral mucosa, the osseous flap may suffice, but the osteocutaneous flap is preferred. The addition of a skin island allows for absolute tension-free intraoral closure that enhances tongue mobility. It also permits monitoring of the otherwise buried flap more effectively. The donor site may be closed directly when less than 4 to 5 cm of skin are included with bone, but split-thickness skin grafting to the site must be considered in the majority of situations.

The fibula osteomyocutaneous flap is also recommended for lateral and symphysisal composite defects that include substantial amounts of intraoral mucosa, tongue, and external skin. As the mucosal defect enlarges, so do the harvested skin paddle requirements. Skin islands from 10 to 12 cm wide are available for more extensive defects. A skin graft is necessary to close the donor site.

Radial forearm. The radial forearm fasciocutaneous flap is supplied by the radial artery, its venae comitantes, and superficial veins (Fig 2-54). The flap may be harvested with or without bone and may include both tendon and muscle. The composite flap may include 10 to 12 cm of bone, the entire skin of the volar and radial forearm, the palmaris longus tendon, and parts of the flexor radialis and flexor pollicis longus muscles. The medial and lateral cutaneous nerves may be included to make it a sensate flap.

Approximately one third of the circumference (radial aspect) of the radius is harvested as a monocortical graft. Several radial artery perforators traverse the flexor pollicis longus muscle in this region to supply the bone’s periosteum. This maintains the viability of the bone graft, but a single osteotomy is all that is advised because of concerns about interrupting the blood supply. The bone can be folded on itself to increase its thickness, although its stock is not well suited for osseointegrated implants.

The skin island is centered between the radial artery and cephalic vein (when present) and includes volar ulnar extension when necessary. If the cephalic vein is not available, the flap is moved toward the ulna, and a superficial volar vein as well as the venae comitantes may be used for venous outflow. The cutaneous paddle is nourished by perforators traversing the lateral intermuscular septum. The fasciocutaneous component of the flap is thinner distally where the perforators are also more numerous.

The radial forearm skin island is an ideal substitute for intraoral lining and can also be used for external and combined defects (see Figs 2-28c, 2-40b, 2-46a, 2-46c, and 2-48). The nondominant upper extremity is the preferred site for flap harvest, although either side may be used because there is minimal long-term impact on function. A nondominant harvest site also allows better communication via writing for patients in the immediately postoperative period, when they are unable to speak because of the location of the surgery and the presence of a tracheotomy in many instances.

The fasciocutaneous soft tissue–only flap with a mandibular reconstruction plate is preferred for the reconstruction of composite posterolateral defects in patients with advanced disease and finite life expectancies or those edentulous patients whose anticipated masticatory forces are less than would warrant bone replacement (see Fig 2-42). The composite flap is used (more sparingly) for straight segmental bone defects that include buccal mucosa and/or floor of the mouth.

The thinness of the tissue is this flap’s major advantage and its disadvantage. It is an excellent substitute for intraoral lining but does not have sufficient volume for the more extensive composite resections. In addition, the bone is not of sufficient thickness for implants, long segment defects, or defects requiring multiple osteotomies.

Scapula. The composite scapular or parascapular flap is supplied by the circumflex scapular artery, through its terminal deep branches, the transverse and descending cutaneous branches, and venae comitantes (Fig 2-55). Approximately 12 to 14 cm of lateral scapular bone, 400 cm of the back skin, and the latissimus dorsi and serratus anterior muscles may be included in the flap for large and complex defects. The thoracodorsal vessels must be included when the latissimus or serratus muscle is used. The pedicle may be traced to the parent subscapular artery and vein for additional pedicle length and increased vessel caliber.

The lateral border of the scapula is dependent on the terminal intramuscular (deep) branch of the circumflex scapular artery for
Rehabilitation of Facial Defects

Layer is allowed to partially catalyze before the subsequent one is placed. Then the base shade is placed, and the mold is closed and processed. A record of color samples and locations is kept for later prosthesis remakes (Fig 5-26).

Rehabilitation of Auricular Defects

Auricular defects occur secondary to congenital malformations, trauma, or surgical removal of neoplasms. Defects secondary to total resection of the auricle are easily rehabilitated prosthetically. Defects secondary to partial resection of the auricle or secondary to microtia are more difficult to rehabilitate.

Preoperative consultations are extremely valuable for patients with auricular tumors requiring resection. Besides informing the patient of the nature of the defect and the future prosthesis, preoperative impressions and photographs make construction of the postsurgical auricular prosthesis simple. After surgery, the wax duplicate of the patient’s ear is easily positioned and adapted to the defect. All that remain to be completed are the placement and feathering of margins and the incorporation of appropriate surface detail.

Temporary auricular prostheses

In most patients, the tissue bed is sufficiently organized 4 to 6 weeks after surgery to allow placement of a temporary ear prosthesis. Use of heat-polymerizing acrylic resin to fabricate this temporary prosthesis will allow periodic adjustment and relining with a temporary denture reliner. Alternatively, a preoperative cast of the missing ear may be used to make a temporary prosthesis from silicone elastomer. This too may be refitted with silicone rubber as healing progresses.

Early rehabilitation of the defect is appreciated by some patients, and few complications have resulted from this practice. Retention is accomplished with medical grade skin adhesives. For most patients, 4 to 5 months is a suitable period to allow for organization and contracture of the wound before fabrication of the permanent prosthesis commences.

Definitive auricular prostheses

Impressions

Unlike orbital or nasal defects, the tissues in the auricular area are not displaceable, and significant distortions do not result from
postural changes. Consequently, the impression can be obtained with the patient positioned upright, lying on his or her side, or in a supine position. However, condylar movements should be closely examined, for they may result in tissue bed mobility, which can affect marginal placement, tissue coverage, and ultimately the retention of the prosthesis. The working cast may have to be lightly sanded in areas of functional soft tissue mobility to prevent gapping and allow a more intimate prosthesis fit in the condylar area.

Before the impression is made, a skin-marking pen may be used to place orientation marks such as the location of the external auditory meatus and the angulation of the long axis of the ear. The defect area is isolated with drapes, cotton is placed in the ear canal, and a suitable impression material is applied. Adjacent hair should be taped or covered with a water-soluble lubricant or cold cream. Petroleum-based products may interfere with processing of some silicones.

Disposable syringes are useful for depositing impression material into areas with difficult access. Light-bodied polysulfide, polyvinyl siloxane, and irreversible hydrocolloid are appropriate impression materials. If irreversible hydrocolloid is used, the addition of 50% more water will improve its flow properties and facilitate the impression procedure.

A backing of quick-setting plaster will provide suitable support for the impression. The plaster backing must be applied in succeeding thin layers to avoid distorting the underlying tissues and the impression. Strips of gauze or wisps of cotton partially embedded within the setting impression material and painted with the appropriate adhesive are used to unite the impression material with the plaster backing.

Sculpting

If a presurgical cast of the resected ear is available, it is reproduced in wax and compared to the remaining ear (Box 5-7). Use of a skin-colored wax rather than pink denture baseplate wax may be helpful because it gives the patient and clinician a more realistic idea of the definitive prosthesis. Appropriate changes are made in the basic contours, and at the next appointment the wax ear is positioned and adapted to the defect to achieve natural symmetry in all planes with the opposite side. A water bath and flame are necessary to complete this procedure successfully. A modified facebow or a Fox occlusal plane (Dentsply Trubyte) may be useful aids to verify the position of the wax prosthesis.

If preoperative casts are not available, the prosthesis can either be sculpted from the beginning or the “donor” technique may be employed. In recent times, computer-aided design and computer-aided manufacture (CAD/CAM) techniques have become increasingly popular (see the discussion on page 299 as well as chapter 7). Sculpting an ear from the beginning is time consuming, but it may be necessary for selected patients. This task is facilitated by dividing the cast of the normal ear into equal sections so that contours are more easily verified (Fig 5-27).

The donor technique is an easier method. A person with ear contours that closely mimic those of the patient is selected. Often, this may be a family member. An impression of the appropriate ear of the donor is made and a wax cast is retrieved. The wax ear is adapted and contoured as necessary. If the clinician makes wax duplicates of the ears of all auriculectomy patients, he or she will have a suitable donor supply and will not need to seek a donor.

When the position and basic contours of the wax pattern are acceptable, the patient is dismissed and the surface details are applied. The upper portion of the anterior margin will be exposed and should be carefully blended and feathered (see Fig 5-27). The middle portion should be wrapped around the tragus, if this structure is present. The inferior margin, in most patients (particularly elderly patients), should be made to look like a crease in the skin. The entire surface must be textured to match the skin textures of the adjacent skin and opposite ear. The texture should be made a little more prominent, because some detail is lost during processing and painting.

Proper texture is important for a number of reasons. First, without texture, the prosthesis can never be suitably matched to adjacent skin. Second, without texture, extrinsic tinting becomes extremely difficult inasmuch as appropriate application, control, and distribution of paint on a smooth surface is almost impossible. Care should be taken to avoid making the stipples excessively deep, because paint has a tendency to pool in deep stipples. Third, texturing provides mechanical retention for extrinsic colorants and lengthens the period of service of the prosthesis.

Recipe for custom sculpting wax

<table>
<thead>
<tr>
<th>Ingredients</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 lb beeswax (Factor II)</td>
</tr>
<tr>
<td>Seven sticks of paraffin (canning supplies from grocery store)</td>
</tr>
<tr>
<td>One or two sheets of pink baseplate wax (dental supply)</td>
</tr>
<tr>
<td>Assorted crayons for custom color formula</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mixing instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melt beeswax, paraffin, and baseplate wax in a double boiler.</td>
</tr>
<tr>
<td>After waxes have melted, remove a small quantity and add melted crayons to develop a custom color.</td>
</tr>
<tr>
<td>Keep the individual wax formulas in an egg poacher (found at hardware stores).</td>
</tr>
<tr>
<td>Evaluate by cooling several drops in cold water.</td>
</tr>
</tbody>
</table>

Fig 5-27 Dividing the normal ear into equal compartments will aid in sculpting. Note how the anterior margin is feathered.
A

- Absorbable collagen sponges, 382
- Abutment teeth, 35, 189, 189f
- Accelerated fractionation, 4, 29
- Acidosis, 388
- Acidulated phosphate fluoride, 33
- Acinar cells, 18, 21
- Acrylic resin prostheses, 262f, 267
- Actinic cheilitis, 258
- Actinomycin D, 428
- Acute candidiasis, 15, 15f, 25, 25f
- Additive-layer manufacturing, 361, 362f
- Adenoid cystic carcinoma, 158, 159f
- Adenoidectomy, 344
- Adenosine deaminase inhibitors, 426
- Adhesive dentistry, 335
- Adhesives, 267–268
- Adipose-derived adult stromal cells, 379
- Adnexal tumors, 257
- Adult stem cells, 377–379
- Aggressiveness, 414
- Alar cartilage, 322
- Alcohol, 67–68
- Alkylating agents, 426, 427t
- Altered fractionation, 4
- Alveolar cleft grafting
 - description of, 331, 332f, 333, 341
 - implant placement in sites of, 341–342, 342f
- Alveolar ridge
 - carcinoma of
 - characteristics of, 85–87, 87f
 - resection of, 10, 91f, 91–92
 - immediate surgical obturator attached to, 169f
 - lymphatic system of, 156
 - Amalgam restorations, 35
 - Ameloblastoma, 85f, 85–86
 - Amorphous calcium phosphate, 34
 - Androgen deprivation therapy, 428
 - Anodontia, 349, 349f
 - Anophthalmia, 301–302
 - Anterior mandible defects
 - facial disfigurement caused by, 90
 - implant-supported prostheses for, 127f, 127–128
 - reconstruction of, 94
 - removable partial denture for, 125–128
 - resection of, disability secondary to, 90, 91f
 - Anterior open bite, 339f
 - Anterolateral thigh flap, 102
 - Antifungal medications, 16
- Antimetabolites, 426, 427t
- Antioxidants, 74
- Apoptosis, 388
- Articulation, 214–216, 215f
- Articulator, 181f
- Aspergillosis, 161
- Assimilation nasality, 219
- Audition, 215–216
- Auricular defects
 - congenital, 286, 286f–287f
 - considerations for, 276
 - implants for, 286, 286f–287f
 - prostheses for. See Auricular prostheses.
- Auricular prostheses
 - coloration of, 275–276, 276f
 - congenital defects reconstructed with, 286, 286f–287f
 - definitive, 276–278, 277f–278f
 - implant-retained, 288–290, 289f–290f
 - partial auriculectomy defects restored with, 276
 - surface texture of, 274, 275f
 - temporary, 276
- Auriculectomy defects
 - illustration of, 272f
 - partial, 278f, 278–279
- Bone
 - radiography therapy effects on, 22f–23f, 22–23
 - tissue engineering of, 384–385
- Bone grafts
 - alveolar cleft, 331, 332f, 333
 - biology of, 96
 - bone regeneration uses of, 384
- cleft lip and palate closure using, 331–332, 332f
- sites for, 96
- Bone marrow stromal cells, 379, 381
- Bone marrow transplantation, 438–439, 439f
- Bone morphogenetic proteins, 96, 380–384, 386
- Bone necrosis, 30–31, 44. See also Osteoradionecrosis.
- Boundaries, in Group Relations model, 406–407
- Brachytherapy
 - conventional radiation therapy and, 29
 - description of, 7
 - osteoradionecrosis associated with, 40
 - soft tissue necrosis risks, 44
 - tumor site scarring secondary to, 45
- Buccal inlay technique, 169, 170f
- Buildup region, 4–5
- Buried sphere implant, 300, 301f
- Buried-integrated implant, 300–301, 301f

C

- CAD/CAM. See Computer-aided design/computer-aided manufacture.
- Calcium phosphate remineralizing preparations, 33–34
- Calvarial bone, 96
- Candida albicans, 15, 15f, 25, 89, 90f, 435, 435f
- Candidiasis, 15f, 15–16, 25, 25f, 71, 435f
- Caregivers, 416–419
- Caries
 - cervical, 34–35
 - radiation, 26, 26f, 122
 - salivary gland dysfunction as risk factor for, 19–20
 - sites of, 34
- Streptococcus mutans, 25
- Cartilage tissue engineering, 385–386
- Casein phosphopeptides, 33–34
- Catalytic innovation, 357–358
- Cell(s)
 - embryonic stem, 376–377, 377f
 - hematopoietic stem, 377–378, 378f
 - primary autologous, 376
- Cell cycle-dependent agents, 3
- Centrally pluripluripotent, 320
- Centric registration, 137, 137f
- Centric relation, 45, 180, 195
- Cerrobend alloy, 11–12
- Cervical carious lesions, 34–35
Cheek biting, 16
Cheek resection defect, 29f
Chemoradiation
oral cavity neoplasms treated with, 92
osteoradionecrosis associated with, 41, 92
preradiation extractions, 29
radiation therapy and, 26–27
spontaneous osteoradionecrosis caused by, 38f
tongue fibrotic changes secondary to, 18
Chemotherapy
agents used in
alkylating, 426, 427t
antimetabolites, 426, 427t
biologic, 427t, 428–429
hormones, 427l, 428
mechanism of action, 425–429
nitrosoureas, 426, 427t
plant alkaloids, 426–427, 427t
basal cell carcinoma treated with, 258
agents used in
trismus after, 135
tongue fibrotic changes secondary to, 18
spontaneous osteoradionecrosis caused by, 41, 92
osteoradionecrosis associated with, 41, 92
oral effects of
neurologic changes secondary to, 436
growth and development affected by, 436
description of, 425
oral effects of
hemorrhage, 432–434
infection, 434–436, 435f
mucositis, 429–432, 430f–431f, 432t
xerostomia, 432
oral hygiene during, 437
Chewing tobacco, 66, 67f
Children
implants in, 350–353, 351f–352f
single-tooth defects in, 351, 351f
Chlorhexidine mouthrinses, 16
Chronic candidiasis, 25, 25f
Chronic candidiasis, 266
Chronic candidiasis, 266
Chemoradiation
oral cavity neoplasms treated with, 92
osteoradionecrosis associated with, 41, 92
preradiation extractions, 29
radiation therapy and, 26–27
spontaneous osteoradionecrosis caused by, 38f
tongue fibrotic changes secondary to, 18
Chemotherapy
agents used in
alkylating, 426, 427t
antimetabolites, 426, 427t
biologic, 427t, 428–429
hormones, 427l, 428
mechanism of action, 425–429
nitrosoureas, 426, 427t
plant alkaloids, 426–427, 427t
basal cell carcinoma treated with, 258
agents used in
trismus after, 135
tongue fibrotic changes secondary to, 18
spontaneous osteoradionecrosis caused by, 41, 92
osteoradionecrosis associated with, 41, 92
oral effects of
neurologic changes secondary to, 436
growth and development affected by, 436
description of, 425
oral effects of
hemorrhage, 432–434
infection, 434–436, 435f
mucositis, 429–432, 430f–431f, 432t
xerostomia, 432
oral hygiene during, 437
Chewing tobacco, 66, 67f
Children
implants in, 350–353, 351f–352f
single-tooth defects in, 351, 351f
Chlorhexidine mouthrinses, 16
Chlorinated polyether, 266
Chronic candidiasis, 25, 25f
Cleft lip and palate
alveolar
description of, 331, 332f, 333, 341
implant placement in sites of, 341–342, 342f
anterior, 317–318
bilateral
with anterior open bite, 339f
bone grafting considerations in, 322
nasoalveolar molding appliance for, 324–327, 325f–327f
nasoalveolar molding of, 326–327, 327f
bone grafting of, 331–332, 332f
breast-feeding difficulties, 319
classification of, 317f–318f, 317–318
description of, 315
treatment of, 318–320
in edentulous patients, 316f, 338f, 340, 340f–341f
etiology of, 318
feeding aids for, 319, 319f, 345
genetic evaluation, 319–320
growth and development, 328–329
incidence of, 318
median, 318, 318f
missing dentition secondary to
adhesive dentistry effects on, 335
in alveolar cleft patients, 341
complete dentures for, 336–338
definitive prosthetic treatment for, 333f–342f, 333–342
eye care for, 333
fixed partial dentures for, 334–335
illustration of, 332f
interim prostheses for, 334, 334f
lateral incisors, 332, 332f
maxillary overlay dentures for, 338–341
osseointegrated implants for, 339–341, 340f–341
overview of, 331–332
removable partial denture for, 334f, 334–336, 336f
zygoma implants for, 341, 341f
nasal deformities associated with, 322–323
nasal resistance caused by, 223
nasoalveolar molding of, 324–327, 325f–327f
nasopharyngeal area access difficulties, 330, 331f
obturator prosthesis for, 340, 330, 330f
occult submucous, 226
orthodontic treatment
maxillary expansion to correct segment position and crossbite, 329, 329f
tooth eruption monitoring, 329, 329f
parental counseling, 318–319
pathogenesis of, 320–321
pharyngeal flaps for, 329, 330f–331f
posterior, 317–317
primary dentition stage, 328
prosthetic treatment in, 330, 330f
removable partial denture for, 316f
speech distortions associated with, 216
summary of, 353
supernumerary teeth associated with, 332
surgical treatment of
growth and development after, 328f, 328–329
lip adhesion, 322
lip repair, 320–322
palatal repair, 323f, 323–324
revision surgery, 323
sequence of, 321f
velopharyngeal closure after, 216f
team evaluation, 320
unilateral
growth and development after repair of, 328f
illustration of, 317f
nasoalveolar molding appliance for, 325–326, 326f
nasoalveolar molding of, 324–326, 325f
velopharyngeal deficiencies in, 330
vertical dimension of occlusion establishment in, 337
Cleft uvula, 317f
Clinical target volume, 7
Cobalt beam, 5
Collagen, 382
Colony-stimulating factors, 428–429
Colorants, of facial prostheses, 268–269
Complete dentures, See also Dentures. cleft lip and palate-related missing dentition treated with, 336–338
impression taking for, 337
lateral mandibular discontinuity defects managed with, 133–140
single maxillary, 338
speech affected by, 337
try-in, 337–338
Complete-palatal coverage prosthesis, 120
Composite resection
oral tongue squamous cell carcinoma treated with, 78f, 78–79
oropharyngeal squamous cell carcinoma treated with, 84–85
Composite resins, 35
Compton effect, 2
Computer modeling, of jaw biomechanics, 107–109
Computer-aided design/computer-aided manufacture
applications of, 358–359, 359f
description of, 95, 299
facial prosthesis construction using, 368
training in, 360–361
Conpect modelers, 362
Congenital microphthalmia, 301–302
Consonants, 217, 217f
Continuous hyperfractionation accelerated radiation therapy, 4
Conventional fractionation, 4, 9
Conventional radiation therapy brachytherapy with, 29
denture placement after, 43
description of, 6
dosimetry, 28f
fields in, 19f–20f
necrosis rate for, 8
olfactory loss secondary to, 16
osteoradionecrosis secondary to, 38, 40
preradiation extraction considerations, 28
symphyseal region, 52
Coronary circulation, 389
Counterdependency, 414
Cooziness, 414
Craniofacial anomalies
ectodermal dysplasia, 347–350, 348f–350f, 352
facial defects secondary to, 256
hemifacial microsomia, 346, 347f
Craniofacial implants
auricular prostheses retained with, 286, 286f–287f, 288–290, 289f–290f
CAD/CAM systems for fabricating, 286
D
Deglutition. See Swallowing.
Delayed surgical obturation
maxillary defects rehabilitated with, 166–
170, 168f–171f
soft palate defects rehabilitated with,
233–234, 234f
Demonstrativeness, 415
Denial defense, 412
Dental care, postradiation
dental maintenance, 32–34
diet, 37
dynamic therapy, 35–36
follow-up, 34–35
restorative, 34–35
tooth extractions, 31–32, 35–36
treatment approach, 37
Dental compliance, 27–28, 31
Dental consultation, 27
Dental maintenance
calcium phosphate remineralizing
preparations, 33–34
objective of, 32
topical fluorides for, 33, 33f
Dental radiation, 24, 74–75
Dentures
care after delivery of, 46
complete. See Complete dentures.
delivery of, 46
in edentulous patients, 43
foundation area for, 45
implant-retained overlay, 140–141
impressions for, 45
morbidity associated with, 44
occlusal forms, 45–46
oral cancer risks, 73–74
oral examination before, 44–45
osteoradionecrosis risks, 42–44
overlay, 132f, 244f, 338–341, 339f
partial. See Partial denture.
placement of, 42–44
postretention, 140f
preexisting bone necrosis and, 44
removable partial. See Removable partial
denture.
residual ridge considerations, 43
soft tissue necrosis risks, 44
tissue irritation caused by, 74
try-in, 337–338
vertical dimension of occlusion
assessments, 45
Dependency, 414
Depplenishment, 414
Diet, 37
Digital technology
future directions in, 372–373
maxillofacial prosthetics application of,
364–369
overview of, 355–357
rapid prototyping, 358–364
significance of, 357–358
surgical applications of, 366–369
virtual reality, 369–372, 371f
Direct biologic effects, 2
Directly ionizing, 2
Dosimetry, 4–6, 19, 20f
Drooling, 89
Dry mouth. See Xerostomia.
Dynamic bite openers, 18, 18f, 45
Dynamic fulcrum lines, 190–191
Dysphagia, 109, 112–113
Dysplasia, 68, 70t
E
Ear
hemifacial microsomia-related
deformities, 346
prosthesis for. See Auricular prostheses.
Economic revolution, 356, 356f
Ectodermal dysplasia, 347–350, 348f–350f, 352
Ectropion, 302–303, 303f
Edema, 16–17, 45, 158, 159f
Edentulous patients
cleft lip and palate in, 316f, 338f, 340,
340f–341f
definitive obturators for, 175–186,
176f–187f
dentures in, 43
edema in, 17
implants in
anterior maxillary segment for, 162
description of, 106, 183, 352–353
lateral mandibular discontinuity defects
in, 133–143
oral prosthesis considerations in, 296, 296f
positioning stents for, 10–11, 11f
surgical obturator for, 167
trismus in, 17
Embryonic stem cells, 376–377, 377f
Endodontic therapy, 35–36
Enucleation, 300–302
Epidermoid carcinoma, 68f, 76f, 165
Epiglottis, 111
Epstein-Barr virus, 64
ERA attachment, 52, 52f, 142
Erythema, 14, 15f
Erythroleukoplakia, 69f, 70
Erythropoiesis, 70–72
Exenteration.
See Orbital exenteration defects.
Exposed-integrated implant, 300–301, 301f
External beam radiation therapy, 11
Extractions
in chemotherapy patients, 437
post radiation
description of, 31–32
endodontic therapy as alternative to,
35–36
preradiation. See Pre radiation extractions.
F
Facial artery, 317
Facial defects
auriculectomy, 272f
basal cell carcinoma as cause of, 256f
ear. See Auricular defects.
eye, 282–285, 283f–285f
free flap reconstruction of, 273
implants for. See Craniofacial implants.
lateral, 297f–298f, 297–298
midface. See Midfacial defects.
nose, 279f–282f, 279–282
orbital, 199–200, 200f, 273, 273f, 282–285,
283f–285f
overview of, 255–256
prostheses for. See Facial prostheses.
rhinectomy, 272, 272f–273f
surgical reconstruction of, 260
Facial neoplasms
basal cell carcinoma, 256f–257f, 257–258
classification of, 256f, 256–257
malignant melanoma, 257, 259f, 259–260
squamous cell carcinoma, 258–259, 259f
types of, 256f
Facial prostheses
adhesives, 267–268
attachment systems, 289
auricular, 276f–279f, 276–279
color stability of, 269–271
coloration/colorants of, 268–269, 275–276,
276f
CAD/CAM used to construct, 368
description of, 375
discoloration of, 271
extrinsic coloration of, 275, 276f
form restorations, 274, 274f
history of, 261–263
lateral facial defects rehabilitated with,
297, 297f
lines of junction between skin and,
274–275
materials used in, 260–271, 261t, 262f, 263t
nasal, 279f–282f, 279–282
ocular. See Ocular prostheses.
oral prosthesis connection with, 298, 298f
orbital, 282–285, 283f–285f
osseointegrated implants used in, 260
patient acceptance of, 255
polymers, 266
polyurethanes used in, 262
primers, 267
principles for, 274–276
problems associated with, 271
silicones, 263–266
surface texture of, 274, 275f
surgical procedures to enhance, 271–273, 272f–273f
surgical reconstruction versus, 260
upper lip considerations, 272f, 272–273, 293, 293f
Falloff region, 4–5
Family members, 416–419
Family Smoking Prevention and Tobacco Control Act, 67
Fibrosis
description of, 9, 16–17
radiation-induced, 135
trismus caused by, 17
Fibular free flaps
blood supply for, 100f
characteristics of, 100–101
composite, 100f, 101
harvesting of, 207, 208f
illustration of, 82f
lateral mandibular discontinuity defect reconstructed with, 129, 130f–131f
Fight-flight, 415
Fixed partial dentures
obturators for, 197, 198f
anterolateral thigh, 102
existing, irradiation of, 53, 33f–35f
facial prostheses retained with, 260
free palatal grafts, 132, 132f
Free radicals, 2
Fricative sounds, 217
Frontal plane rotation, 88, 89f, 135f
Fulcrum lines, 190–191
Fungal infections, 435, 435f
Fused deposition modeling, 395f, 395–396

G
Gamma rays, 2
Gingival bleeding, 433, 434f
Gingival carcinoma, 8, 87, 87f
Gingivoperiosteoplasty, 326
Glass-ionomer cements, 35
Glossectomy
description of, 77, 78f
mandibular continuity after, 88f
partial, 117f, 143f
speech after, 114
swallowing affected by, 113
tissue engineering for defects caused by, 386
Gold copings, 339, 339f
Gold restorations, 14
Graft-versus-host disease, 438–439, 439f
Granström protocol, 53
Gross tumor volume
description of, 6–7, 9
intensity-modulated radiation therapy, 28
mandibular body, 29
osteoradionecrosis risks, 38
Group Relations model, 404–408
Growth and development
after cleft lip and palate treatment, 328f, 328–329
chemotherapy effects on, 436
Growth factors, 15–16, 380–384, 381f

H
Hader bar segment, 52, 340
Hairline leukoplakia, 71
Hard palate
blood supply to, 157, 157f
defects of, 166
maxillary defects bordering, definitive obturators for, 197, 198f
retraction of, 162, 162f
Healing abutments, 184
Helplessness, 414
Hematopoietic stem cells, 377–378, 378f
Hemifacial microsomia
defects caused by
illustration of, 88f
myocutaneous flap reconstruction of, 93, 94f
prosthetic reconstruction of, 144f
description of, 77
Hemorrhage, oral, 432–434
Heteroplasmy, 64
Hepatitis B virus, 64
Hepatitis C virus, 64
Hepatitis E virus, 64
Hierarchical obsolescence, 360
High-energy photons, 2
High-temperature vulcanizing silicones, 264
Hormone therapy, 427f, 428
Hostility, 414
Human papillomaviruses, 65
Hyaluronic acid scaffolds, 383
Hyperbaric oxygen
angiogenesis promotion using, 50
controversy regarding, 50
osteoradionecrosis treated with, 40–41, 41f
postradiation extractions with, 38
Hyperfractionation, 4, 29
Hypermobility, 216, 240, 330, 343
Hyperplastic candidiasis, 435
Hypofractionation, 4
Hypoplasia, 216
Hypopnea, 216
Hypoxia, 388, 390

I
I-bar retainers, 129, 196f
Immediate surgical obturation
maxillary defects rehabilitated with, 166–170, 168f–171f
soft palate defects rehabilitated with, 233, 234f
velopharyngeal defects rehabilitated with, 233, 234f
Implant(s)
animal studies of, 47–48
in children, 350–353, 351f–352f
cleft lip and palate uses of, 339–341, 340f–341
craniofacial, See Craniofacial implants.
definitive obturator and, 174, 175f
description of, 46–47
in ectodermal dysplasia patients, 349–350
in edentulous patients
anterior maxillary segment for, 162
description of, 106, 183, 352–353
existing, irradiation of, 53, 33f–55
facial prostheses retained with, 260
failure of, 52
free flap reconstruction with, 131–132, 132f
human data regarding, 48–50
impairments of, 50
irradiation of, 53–54, 53f

INDEX
Incisive foramen, 317
Impressions
restorations
Implant-supported prostheses and
Implant-retained prostheses, 140–141
Implant placement
digitally derived surgical guide for, 364
with free flaps, 127–132, 132f
immediate, 273, 273f
in irradiated bone, 53
simulation of, 360
tumor resection and, 165, 273, 273f
Implant-retained overlay dentures, 140–141
Implant-retained prostheses
auricular, 290f
craniofacial uses of, 285, 290f
definitive obturators and, 182–186, 183f–186f, 244–245
lateral mandibular discontinuity defects treated with, 131, 131f
Implant-supported prostheses and
restorations
anterior mandibular defects managed with, 127f, 127–128
Granström protocol for, 53
mastication and, 106
in partially edentulous patients, 127, 127f
removal of, 54f
Impressions
auricular prosthesis, 276–277
cleft lip and palate, 324, 325f
complete dentures, 337
dentures, 45, 123, 123f, 136–137
nasal prosthesis, 279–280, 280f
obturators
definitive, 178–180, 179f–180f, 193f–195f
surgical, 167, 168f, 171, 172f
ocular prostheses, 304, 304f
orbital prosthesis, 282–283, 283f
orbital-nasal-cheek prosthesis, 294, 295f
trismus effects on, 179
Incisive foramen, 317
Indications of head and neck cancer, 8–9
Infection, chemotherapy-induced, 434–436, 435f
Infuse/IT-Cage device, 383–384
Intensity-modulated radiation therapy
dose distribution of, 6, 7f
dosimetry, 28f, 51
gross tumor volume, 28
olfactory loss secondary to, 16
osteoradionecrosis secondary to, 38, 43
planning target volumes for, 6–7
preradiation extraction considerations, 28–29
salivary glands affected by, 19, 20f
symphyseal region, 52
Interferons, 428
Interim obturation
maxillary defects rehabilitated with, 172–173, 173f
soft palate defects rehabilitated with, 234, 235f
Interim prostheses, 334, 334f
Interleukins, 428
Interstitial implantation, 7
Inverse square law, 7
Iridium 192, 7
Iridium implants, 40f
Iron-deficiency anemia, 74
Isodose curves, 5, 5f
Isoeffects modeling, 3
Isoelectric points, 382
Isotopes, 7–8
J
Jaw biomechanics, 107–109
K
Keratinocytes, 256
Keratoacanthomas, 256
Knowledge work, 356–357
Koilocytes, 71
L
Lactic acidosis, 388
Larynx, 110
Lateral mandibular discontinuity defects
complete denture for, 133–140
in edentulous patients, 133–143
fibular free flap reconstruction of, 129, 130f–131f
implant-retained prostheses for, 131, 131f
partial denture for, 122–124
in partially edentulous patients, 128–131
removable partial denture for, 128–131
Lateral palate defects, 316, 316f
Lateral pharyngeal walls, 230–231
Leukemia, 73, 73f, 439
Lingual plates, 122, 122f
Lingual resections, 112–113
Lip
primary. See Cleft lip and palate.
upper. See Upper lip.
zones of, 320
Lip adhesions, 322
Lip pits, 320, 320f
Lip plumper, 136, 140, 140f
Lymph nodes
neck, 79, 79f
oral tongue squamous cell carcinoma
metastasis to, 76
submandibular, 79
Lymphoma, 8
M
Magnetic resonance imaging, 222
Malignant melanoma, 257, 259f, 259–260
Mandible
biomechanics of, 107–108
carcinoma of, 85–87, 87f
development of, 88–89
growth of, 345
implants in, 50, 52, 52f
mastication affected by integrity of, 105–106
movements during speech, 218
osteoradionecrosis risks in, 27
preradiation extractions, 27
in Robin sequence, 345, 345f
without continuity, 107–108, 108f
Mandibular angle reconstruction, 98–99
Mandibular body
gross tumor volume, 29
reconstruction of
fibular free flap, 92, 92f
free bone grafts, 98
Mandibular condyle reconstruction, 98–99
Mandibular continuity
after glossectomy, 88, 113
defects with maintenance or
reestablishment of, 125–132, 143–145
prosthetic treatments for, 144
reconstruction plate for, 93f
restoration of, 88, 93f
swallowing and, 113
teeth and, 93
Mandibular defects
 anterior. See Anterior mandible defects.
 discontinuity
 description of, 118
 lateral. See Lateral mandibular discontinuity defects.
 mandibular guidance therapy for, 118–121
 mastication difficulties associated with, 133
 maxillary defects and, comparison between, 155–156
 rehabilitation of, 156
 resection of, disability secondary to, 87–90, 88f–90f
 tongue release for, 102–103
 traumatic, 145–146
 vestibuloplasty for, 102–103

Mandibular guidance therapy
 description of, 118
 guidance restorations, 119–121
 maxillomandibular fixation, 118–119
 occlusal equilibration after, 121, 121f
 outcomes of, 121
 prostheses for, 119f, 119–120
 timing of, 119

Mandibular ramus reconstruction, 98–99

Mandibular reconstruction
 after tumor ablation, 92
 complications of, 98
 delayed, 97
 free bone grafts for, 95–99, 99f
 goals of, 95–96
 hemifacial microsomia treated with, 347f
 immediate, 97
 implant placement after, 106
 mandibular fragment presurgical position, 92
 timing of, 97

Mandibular resection
 deviation caused by, 118
 disability secondary to, 87–90, 88f–90f
 mastication effects, 104–109
 occlusion affected by, 108
 saliva control affected by, 89
 trismus secondary to, 89–90

Mandibular symphysis reconstruction, 98, 99f

Mandibular tumors
 ameloblastoma, 85f, 85–86
 description of, 75
 floor of the mouth carcinoma, 81f–83f, 81–83
 oral tongue carcinoma. See Oral tongue squamous cell carcinoma.
 oropharyngeal squamous cell carcinoma, 83–85
 osteosarcoma, 86–87
 presurgical consultation for, 75
 tonsillar squamous cell carcinoma, 83–85
 Mandibular-based tongue prosthesis, 117, 117f
 Mandibulectomy
 description of, 41
 marginal, 80, 143
 speech affected by, 114
 Mandibulotomy, 80, 113
 Marginal mandibulectomy, 80, 143
 Master casts, 181f
 Mastication
 mandibular discontinuity defect effects on, 133
 mandibular resection effects on, 104–109
 occlusal force and, 106
 physiology of, 104
 radiation therapy effects on, 106–107
 tooth-to-tooth contacts and, 107
 Maxilla
 collapsed, 339f
 growth of, 350
 implants in, 49, 52–53
 osteoradionecrosis risks in, 27
 preradiation extractions, 27
 Maxillary defects
 access to, 164–165, 165f
 anterior, 197–199, 198f
 avulsive
 description of, 161
 illustration of, 200f
 osseointegrated implants for, 202f
 rehabilitation for, 200–201
 etiology of, 158t
 free flaps for, 205–206
 mandibular defects and, comparison between, 155–156
 prosthetic rehabilitation of defect access considerations, 164–165, 165f
 definitive obturators. See Obturators.
 hard palate retention, 162
 interim obturation, 172–173, 173f
 maxillary tuberosity effects on, 186
 palatal mucosa, 163–164, 164f
 phases of, 166–175
 presurgical planning, 166
 soft palate, 164
 surgical obturation. See Surgical obturation.
 surgical procedures to enhance, 161–165
 surgical rehabilitation versus, 165–166
 tooth retention, 162–163
 tooth retention adjacent to, 162–163, 174f, 189
 Maxillary guidance ramp, 138f–139f
 Maxillary tuberosity, 136f, 176, 177f
 Maxillary tumors
 adenoid cystic carcinomas, 158, 159f
 behavioral characteristics of, 158–159
 debulking surgery for, 159
 diagnosis of, 157–159
 edema associated with, 158, 159f
 imaging of, 158
 presentation of, 158
 surgical resection of, 159–161
 treatment of, 159–161
 Maxillectomy
 maxillary tumors treated with, 160f, 160–161
 skin incisions for, 160f
 Maxillectomy defects
 cheek resection defect with, 298f
 definitive obturators for in dentulous patients, 187f–197f, 187–197
 implant-retained prostheses and, 182–186, 183f–186f
 partial defects, 182, 182f
 rapid prototyping and manufacturing application, 364–365, 365f
 fulcrum lines affected by, 190
 immediate surgical obturation for, 166, 171f
 orbital exenteration defects and, 199–200, 200f, 298f
 osteocutaneous flap reconstruction of, 165
 ovoid arch form, 190f
 partial, definitive obturators for, 182, 182f, 197, 197f
 partial denture designs for, 192, 192f
 posterior pharyngeal wall extension of, 199, 199f
 skin grafting for, 162, 163f
 soft tissue flap contraindications, 164, 165f
 tissue bar attachments for, 186, 187f
 trismus and, 191f
 Maxillofacial prosthetics
 digital technology application to, 364–369
 speech effects, 216
 speech phonemes affected by, 217–218
 Maxillomandibular fixation, 118–119
 Meaningfulness, 415–416
 Meatal obturator prostheses, 248–249, 249f
 Median cleft lip, 318, 318f
 Median palatine process, 316
 Medical models, 360
 Melanocytes, 256–257
 Melanoma, 257, 259f, 259–260
 Merkel cell carcinoma, 257
 Microcystic adenocarcinoma, 257
 Micrognathia, 345–346
 Microphthalmia, 301–302
 Microtia, 286f
 Microvascular anastomosis, 197
 Mucocutaneous defects
 description of, 293
 large, 294f
 lateral, 297f–298f, 297–298
 oral cavity involvement, 295, 295f
 oral prosthesis for, 295, 296f
of cleft lip and palate, 324–327, 325f–327f
appliance for, 326f–327f, 326–327
Nasolabial folds, 274
Nasometrics, 224–225
Nasopharyngeal carcinomas, 8
Navigation surgery, 367, 367f
Neck dissection, 79, 79f, 84
Neck metastases, 258
Neediness, 414
Nevi, 257
Nitrosamines, 66
Nitrosoureas, 426, 427f
Nodular melanomas, 260
Nutrition, 74

Nasal_X

Nasal breathing, 224
Nasal defects
cleft lip and palate as cause of, 322–323
description of, 279f–282, 279–282, 290
Nasal endoscopy, 220–221, 221f, 231
Nasal prostheses
definitive, 279–282, 280f–282f
illustration of, 262f
implant-retained, 288, 288f, 290, 291f, 292
partial, 282
temporary, 279, 279f
Nasal resistance, 223
Nasal stent, 14f
Nasal valve, 223–224
Nasalance, 224
Nasoalveolar molding
abutments for, 189, 189f
level of placement, 242
lingual retention of, 192
masticatory performance effects, 202
maxillary defects treated with
anterior, 197–199, 198f
bordering hard and soft palates, 197, 198f
partial maxillectomy, 197, 197f
total maxillectomy, 187f–197f, 187–197
maxillectomy defects
in dentulous patients, 187f–197f, 187–197
implant-retained prostheses and, 182–186, 183f–186f
orbital exenteration defects and, 199–200, 200f
partial, 182, 182f
posterior pharyngeal wall extension, 199, 199f
meatal, 248–249, 249f
movement of, 176, 176f
nasopharyngeal placement of, 238
occlusal schemes, 181, 181f, 195f, 195–196
overlay denture with, 244f
palatal lift prostheses, 241, 246–248, 247f–248f
planning considerations for, 173–175
processing of, 181–182, 182f
quality of life effects, 204–205
rapid prototyping and manufacturing used in construction of, 364–365, 365f
records, 180–181, 181f, 195, 195f
relining of, 205
retention of, 176–177, 177f
skin grafting benefits for, 162, 163f
soft palate defects rehabilitated with, 234–243, 235f, 237f–239f, 241f–242f
speech effects, 203–204
speech restoration prognosis, 243–244, 249
speech therapy after placement of, 239–240
stability of, 177–178
support for, 176, 177f
timing of construction, 173
total palatoplasty defects treated with, 198f, 199
waxing, 181
weight of, 174–175
Occlusal ramp, 124, 124f
Occlusion
complete denture and, 137–139, 138f–139f
dynamic modeling of, 108–109
equilibration of after mandibular guidance therapy, 121, 121f
removable partial denture design after, 130
mandibular resection effects on, 108
vertical dimension of, 45, 137, 180, 217, 337, 339, 347
Occult submucous cleft palate, 226, 342–344, 343f
Ocular prostheses. See also Orbital prostheses.

anophthalmia, 301–302
complications that affect socket fitting of, 302–303, 303f
congenital microphthalmia, 301–302
delivery of, 308, 309f
fabrication of, 304f–309f, 304–309
goals for, 300
implants
motility of, 304
selection of, 300–301, 301f–302f
impression for, 304, 304f
iris, 305–308, 306f–307f
postoperative care, 301
precautions for, 308–309
sclera, 308, 308f
stock eye modifications, 309
Olfactory impairments, 16

Oral mucositis, 429–432, 430f–431f, 432t
Oral mucositis effects on, 14–16, 15f, 17f
Oral prosthesis
construction of, 295, 296f
in edentulous patients, 296, 296f
facial prosthesis connection with, 298, 298f
Oral tongue squamous cell carcinoma
cervical metastases of, 76, 79, 79f
classification of, 76, 77t
clinopathologic considerations, 75–76
composite resection of, 78f, 78–79
lymph node metastases of, 76
mandibulotomy for, 80
metastases of, 76
prognosis for, 76
resection of, 77–79, 78f
segmental mandibulectomy for, 80
staging of, 76, 77t

treatment of, 76–81
Orbicularis oris muscle, 320–321
Orbital exenteration defects
description of, 199–200, 273, 300
illustration of, 200f, 273f
Orbital floor defects, 200
Orbital prosthesis. See also Ocular prostheses.

CAD/CAM fabrication of, 299, 299f
description of, 282–283, 283f–285f
ehygiene issues, 291–292, 292f
implant-retained, 290–292, 291f
magnetic retention of, 291, 291f
Orbital-nasal-cheek defects, 294–295, 295f
Organogenesis, 389
Oronasal fistula, 331, 332f
Orbital exenteration of, 165–166
Orbital floor defects, 200
Orbital floor defects
Orbital floor defects
Orbital exenteration defects
description of, 199–200, 273, 300
illustration of, 200f, 273f
Orbital floor defects, 200
Orbital prosthesis. See also Ocular prostheses.

CAD/CAM fabrication of, 299, 299f
description of, 282–283, 283f–285f
ehygiene issues, 291–292, 292f
implant-retained, 290–292, 291f
magnetic retention of, 291, 291f
Orbital-nasal-cheek defects, 294–295, 295f
Organogenesis, 389
Oronasal fistula, 331, 332f
Ororhyngeal lesions, 45
Oroorhyngeal squamous cell carcinoma, 83–85
Orthovoltage, 5
Osteoblasts, 22, 380
Osteoclasts, 22
Osteocutaneous flaps, 165
Osteogenesis, 96
Osteoinduction, 96
Osteoradionecrosis
bone necrosis caused by, 37
brachytherapy, 40
chemoradiation and, 26, 92
conservative treatment of, 39–40
contributing factors, 38–39
conventional radiation therapy as cause of, 38, 39
definition of, 37
dentures and, 42–44
gross tumor volume and, 38
hydramic oxygen therapy for, 40–41, 41f
incidence of, 38
intensity-modulated radiation therapy as cause of, 38, 43
mandible, 28
osseointegrated implants as cause of, 43,
46–47, 49f, 51, 51f
peri-implant tissue infection as risk for, 54
periostald infection associated with, 23,
27f, 38
postradiation extractions and, 38
preradiation extraction sites, 38
prostheses and, 42
removable partial denture and, 39
risk factors for, 26, 28, 51
spontaneous, 37, 37f
trauma-induced, 37
treatment of, 39–41
vascularized free flaps for, 41
Osteosarcoma, 86–87
Oculorrhyngeal defects, 123, 133, 134f
Ocular prostheses.

Occlusal splints, 311–312
Ossification, 96
Osseointegration, 96
Oxidation, 2

P
Pair production, 2
Palatal defects
causes of, 161, 161f
surgical rehabilitation of flaps for, 166, 167f
prosthetic rehabilitation versus, 165–166
traumatic, 200
Palatal grafts, 132, 132f
Palatal incompetence, 218
Palatal insufficiency, 218
Palatal lift prostheses, 241, 246–248,
247f–248f
Palatal mucosa, 163–164, 164f
Palatal papillary hyperplasia, 74
Palatal speech aid, 116, 117f
Palate. See also Hard palate; Soft palate.
anatomy of, 156–157
blood supply to, 157f
cleft. See Cleft lip and palate.
embryologic development of, 316f,
316–317
lymphatic drainage of, 156, 157f
secondary, 316f
squamous cell carcinoma of, 159f
Palatoplasty, 159–160
Palatoplasty defects
description of, 159, 160f
osseointegrated implants for, 366, 366f
total, 198f, 199, 366
Palatine shelves, 316–317
Palatoglossus muscle, 231
Palatopharyngeal muscle, 231
Paranasal sinuses, 156–157, 157f
Paré, Ambrose, 261–262
Parotid gland, 19
Parotid sialadenitis, 19
Partial auriculectomy defects, 278f, 278–279
Partial dentures. See also Fixed partial dentures; Removable partial denture.
design of
for avulsive maxillary defects, 201
considerations for, 210
description of, 188–189
for maxillectomy defects, 192, 192f
for soft palate defects, 236
trismus effects on, 191, 191f
fabrication of, 123, 123f
lateral discontinuity defects managed with, 122–124
Partial glossectomy, 117f, 143f
Partial nasal prostheses, 282
Partially edentulous patients
lateral discontinuity defects in, 122–124
lateral mandibular discontinuity defects in, 128–131
Particulate radiation, 2, 5, 5f
Passavant ridge, 222, 228f–229f, 228–229
Passive-aggressiveness, 414
Passiveness, 414
Patients
Basic Assumption activities of, 413–415
biopsychosocial symptoms, morbidities, and disabilities, 412–413
challenges for, 410–413
cognitive disruptions, 412
followship tasks of, 410
leadership tasks of, 409–410
mortality of, 411–412
psychosocial rewards for, 410
re-scaling by, 416
role of, 409–416
self-management, 415–416
Pectoralis major myocutaneous flap, 78, 78f, 94
Penetration depth of the maximum dose, 4–5
Pericoronitis, 30
Peri-implant tissue infections, 54
Periodontal disease, 437
Periodontal infection, 23, 27f, 38
Periodontium, 23f, 23–24
Peripheral neuropathy, 436
Pharyngeal cancer, 62
Pharyngeal plexus, 231
Pharyngeal flaps, 330, 330f–331f
Pharyngeal closure role of, 228–230
Pharyngopalatal resection, 111
Pharyngeal plexus, 231
Pharyngopalatal resection, 111
Phase-measuring profilometry, 299, 299f
Phonation, 214
Photodentist effect, 2
Photon beam, 5, 5f
Photons, 2
Phytochemicals, 72
Planning target volumes, 6
Plant alkaloids, 426–427, 427f
Plummer-Vinson syndrome, 74
Polyjet modeling, 363
Polymers, 266
Polyphosphazenes, 266
Porcelain-fused-to-metal restoration, 334
Positioning stents, 10f–11f, 10–11
Posterior pharyngeal wall anatomy of, 228–230
maxillectomy defects extending to, 199, 199f
muscles of, 229–230
Passavant ridge, 222, 228f–229f, 228–229
velopharyngeal closure role of, 228–230
Posterior pharyngeal wall managed with, 122–124

Q
Quality of life
concepts associated with, 146
instruments for assessing, 146–147, 147b, 148f
mandibular defects effect on, 155
maxillary defects effect on, 155
oral cancer effects on, 146–148

R
Radial forearm fasciocutaneous flap, 101, 101f, 143f, 245
Radiation carrier, 12f, 12–13
Radiation positioning stents
description of, 12–13
tissue bolus devices and, 14f
Radiation therapy. See also Chemoradiation.
basal cell carcinoma treated with, 258
biologic effects of, 2–3, 3f
chemoradiation and, 26–27
conventional. See Conventional radiation therapy.
definition of, 2
general tissue effects of, 9
heart effects of, 26
indications for, 8–9
intensity-modulated. See Intensity-modulated radiation therapy.
oral effects of
bone, 22f–23, 22–23
caries, 26, 26f
dental tissue, 24, 24f
dedema, 16–17
mucositis, 14–15, 15f
olfactory impairments, 16
oral flora alterations, 15, 24–25, 25f
oral mucous membranes, 14–16, 15f, 17f
periodontium, 23f, 23–24
pulp, 24, 25f
root sensitivity, 24
salivary gland dysfunction. See Salivary gland(s), dysfunction.
taste impairments, 16
tooth development, 24, 25f
trismus, 17–18, 18f
velopharyngeal insufficiency, 17–18
peri-implant tissue infections after, 54
physical principles of, 2
postoperative, 9
principles of, 2–9
squamous cell carcinoma treated with, 259
tissue interactions, 2
tonsillar squamous cell carcinoma treated with, 84
Radical maxillectomy, 17
Radical neck dissection, 79–80, 90
Radiopaque shields, 12
Radioprotective agents, 15
Rapid prototyping, 358–364, 396
concept modelers, 362
description of, 361
extrusion-based processes, 363
maxillary obturator construction using, 364–365, 365f
powder-based processes, 363–364
resin-based processes, 362–363
Recombinant human bone morphogenetic proteins, 379, 382–383
Recontouring stents, 12
Record base, 195, 195f
Records, 180–181, 181f, 195, 195f
Rectus abdominis flap, 102
Remineralizing preparations, 33–34

449
Removable partial dentures. *See also* Partial dentures.
cleft lip and palate treated with, 316f, 334, 334f
cleft lip and palate–related missing dentition treated with, 334f, 334–336, 336f
conventional, 125
designs of considerations for, 210
description of, 129–130, 190f
trismus effect on, 191
framework of, 191f
interim, 334, 334f
lateral discontinuity defects managed with, 122, 122f
lateral mandibular discontinuity defects managed with, 128–131
mandibular defects treated with, 125–128
osteoradionecrosis risks, 39
overlay, 338, 339f
rotational path, 126, 126f
Reoxygenation, 3
Repair of sublethal damage, 2
Resection
deglutition affected by, 109–113
disabilities secondary to, 61, 87–92
implant placement concurrent with, 165, 273, 273f
mastication effects, 104–109
maxillary tumors, 159–161
oral function after, 103–118
oral tongue squamous cell carcinoma treated with, 77–79, 78f
osteosarcoma treated with, 86
palatal mucosa used to cover, 164f
speech affected by, 114–118
transalveolar, 162, 163f
Resonation, 214, 216
Responsibility, in Group Relations model, 407–408
Rest seats, 188, 189f
Restorative care, 34–35
Rhinecotomes defects
illustration of, 272, 272f–273f
nasal prosthesis for
description of, 279–282, 280f
implant-retained, 290
Rib graft, for mandibular condyle reconstruction, 98–99
Robin sequence, 323, 344–346, 345f
Room-temperature vulcanizing silicones, 264–266
Root canal therapy
after high-dose radiotherapy, 32, 35
crown amputation and, 36f
Rotational path removable partial denture, 126, 126f
S
Sagging lower eyelid, 303, 303f
Saliva
buffering capacity of, 21
functions of, 432
mandibular resection effects on control of, 89
production of, 19
prostodontic success affected by, 45
taste acuity affected by, 16
tongue resection effects on control of, 89
viscosity of, after radiation therapy, 20
Saliva stimulants, 21, 432
Saliva substitutes, 21, 25
Salivary gland(s)
adenocarcinoma of, 10
dysfunction of
caries risk secondary to, 19–20
chemotherapy-related, 432
conventional radiation therapy fields and, 19, 19f–20f
dose volume concept for, 19–20
fibrosis, 19
histology of, 19f
mechanisms of, 18
posttherapy recovery of, 20
stem cell transplantation for, 21–22
velar eminence of, 225–226
Selkirk sequence, 323, 323f
Sensory nerves
audition, 215
physiology of, 215
visceral integration of, 215
Speech
articulation, 214–216, 215f
audition, 215–216
closed-loop systems that affect, 215–216
components of, 213–216
definitive obturator effects on, 203–204
denture effects on, 337
maxillofacial prosthetics and, 216
neural integration of, 215
obturator effect on restoration of, 243–244, 249
phonation, 214
physiology of, 114
resection effects on, 114–118
resonation, 214, 216
respiration and, 213–214
subjacent cleft palate effects on, 344
tongue resection effects on, 88
tongue’s role in production of, 114, 215
Speech aids, 115–118
Snuff dipping, 66
Soft liners, 42
Soft palate. *See also* Palate.
anatomy of, 156–157, 157f, 225–228
deglutition role of, 110
histology of, 227
levator veli palatini, 164, 164f, 227–228
maxillary defects bordering, definitive obturators for, 197, 198f
muscular diastasis of, 343f
musculus uvulae of, 226–227
position and movement of, 225–226
velar eminence of, 225–226
Soft palate defects
acquired, 218
cleft. *See* Cleft lip and palate.
lateral, 170
obturators for
definitive, 234–243
interim, 234, 235f
metal, 248–249, 249f
palatal lift prostheses for, 241, 246–248, 247f–248f
posterior border, 240–243, 241f–243f
reconstruction of
description of, 94–95
surgical, 218, 219f
rehabilitation of
speech considerations. *See* Speech.
vopharyngeal mechanism. *See* Vopharyngeal mechanism.
resection of, disabilities secondary to, 91
surgical issues for, 245
surgical obturation for, 233–234, 234f
total, 235–240
Soft tissue dehiscence, 98
Soft tissue necrosis
dentures and, 44
description of, 41–42
oral mucous membrane, 16, 17f
Solid freeform fabrication technologies, 391, 396
Speech
articulation, 214–216, 215f
audition, 215–216
closed-loop systems that affect, 215–216
components of, 213–216
definitive obturator effects on, 203–204
denture effects on, 337
maxillofacial prosthetics and, 216
neural integration of, 215
obturator effect on restoration of, 243–244, 249
phonation, 214
physiology of, 114
resection effects on, 114–118
resonation, 214, 216
respiration and, 213–214
subjacent cleft palate effects on, 344
tongue resection effects on, 88
tongue’s role in production of, 114, 215
Speech aids, 115–118
Speech phonemes, 216–218
Speech therapy, 116–117, 239–240
Squamous cell carcinoma
chemoprevention of, 72
clinical features of, 258, 259f
clinical presentation of, 63f
erythroleukoplakia transformation into, 69f
facial, 258–259, 259f
gingival, 87, 87f
intraoral sites for, 61, 63f
maxillary defects caused by, 198f
oral tongue. See Oral tongue squamous cell carcinoma.
oropharyngeal, 83–85
palate, 159f
tonsillar, 83–85
treatment of, 259, 259f
Stem cells
embryonie, 376–377, 377f
hematopoietic, 377–378, 378f
transplantation of, for salivary gland dysfunction, 21–22
Stents
positioning, 10f–11f, 10–11
radiation positioning, 12–13
recontouring, 12
shielding, 11f, 11–12
Stereolithography, 362, 363f, 391, 393–394, 394f
Streptococcus mutans, 25, 34
Superficial spreading malignant melanoma, 259f
Superior labial artery, 320
Supernumerary teeth, 332
Support systems, 416–419
Surgical obturation
delayed
maxillary defects rehabilitated with, 166–170, 168f–171f
soft palate defects rehabilitated with, 233–234, 234f
immediate
maxillary defects rehabilitated with, 166–170, 168f–171f
soft palate defects rehabilitated with, 233, 234f
velopharyngeal defects rehabilitated with, 233, 234f
materials used in, 166
Surveillance Epidemiology and End Results Program, 62
Swallow reflex, 110
Swallowing
aids for, 115–118
dysphagia, 109, 112–113
evaluation of, 111–112
fiber-optic endoscopic evaluation of, 112
phases of, 109f, 109–110
specialized testing of, 112
tongue resection effects on, 88
tonsillar resection effects on, 91
velopharyngeal closure during, 219
videofluoroscopic modified barium swallow evaluation of, 112
T
Taste impairments, 16
Taxanes, 426
Team functioning, 422
Technologist group, 357
Teeth
missing, in cleft lip and palate patients. See Cleft lip and palate, missing dentition secondary to.
radiation therapy effects on development of, 24, 25f
Telangiectasia, 16, 17f
Temporal orbital joint, 346, 347f
Thermal inkjet modeling, 393–394
Thrombocytopenia, 432–433, 433t
Throat screen, 36
Thrombocytopenia, 432–433, 433t
Thick tissue engineering, 387–390
Tissue
radiation therapy interactions with, 2
tolerance of, 3
overview of, 388–389
Tissue bar attachments, 183f, 183–186, 186f–187f, 244f, 290, 340, 365f
Tissue bolus devices, 13–14, 14f
Tissue engineering
acidosis concerns, 388–389
advanced manufacturing technologies for fused deposition modeling, 395f, 395–396
overview of, 390–391
selective laser sintering, 394f, 394–395
thermal inkjet modeling, 393
three-dimensional printing, 391–393, 392f–393f
Throat screen, 36
Thrombocytopenia, 432–433, 433t
Tocopherol, 32, 40
Tongue
articulation of, 114
defects of
reconstruction of, 94–95
resection of, disability secondary to, 87–90, 88f–90f
divisions of, 75
edema of, 16, 45
fibrotic changes in, 18
flap reconstruction of, 77–78, 78f
mandibular-based prosthesis, 117, 117f
mastication role of, 106
prosthetic outcome affected by mobility of, 134f
reconstruction of
bulk restoration through, 77–78, 78f, 90f
free flaps for, 77–78, 78f, 90f, 93, 94f, 104, 104f, 113f
importance of, 92
mastication affected by, 106
resection of
anterior, 103
disabilities secondary to, 87–90, 88f–90f, 93, 103
lower lip affected by, 87
saliva control affected by, 89
speech affected by, 114
squamous cell carcinoma treated with, 77–79, 78f
speech production role of, 114, 215
squamous cell carcinoma of. See Oral tongue squamous cell carcinoma.
tissue engineering applications, 386–387
Tongue biting, 16
Tongue release, 102–103
Tongue-positioning devices, 10, 11f
Tonsillar defects, 91, 91f, 94–95
Tonsillar squamous cell carcinoma, 83–85
Tonsillectomy, 344
Tooth eruption monitoring, in cleft lip and palate patients, 329, 329f
Tooth extractions. See Extractions.
Topical fluorides, 33, 33f
Topoisomerase inhibitors, 426
Total palatectomy, 198f, 199
Tragus, 272, 272f
Transalveolar resections, 162, 163f

451
Trauma. See also Maxillary defects, avulsive.
mandibular defects caused by, 145–146
osteoradionecrosis induced by, 37
palatal defects caused by, 200

Treatment planning
beam characteristics included in, 4
craniofacial implants, 285–286
description of, 8
implants, 366–367
Triopolyphosphate, 386

Trismus
after chemoradiation, 135
description of, 17–18, 18f, 37, 45
immediate surgical obturator affected by, 169
impression taking affected by, 179
mandibular resection as cause of, 89–90
maxillary obturator prosthesis affected by, 180
removable partial denture design affected by, 191
vertical dimension of occlusion considerations, 137
Two-stage palatoplasty, 323–324

U
Unicystic ameloblastoma, 86
Upper lip
cleft of. See Cleft lip and palate.
facial prosthesis considerations, 272f, 272–273, 293, 293f
midfacial defects involving, 295, 295f
Urethane-lined silicone prostheses, 267
UV light absorber, 271

V
Value creation, 356–357
Van der Woude syndrome, 320f
Vascularized free flaps, 41
Velar eminence, 226–227
Velopharyngeal closure
level of, 231
muscles involved in, 227f
patterns of, 218–219, 220f, 221–222, 229f, 344
physiology of, 226f
sphincteric nature of, 230
timing of, 224
Velopharyngeal deficiencies
classification of, 218
in cleft lip and palate patients, 330
etiology of, 218
Velopharyngeal insufficiency
circular closure pattern associated with, 229
description of, 17–18, 221
Velopharyngeal mechanism
anatomy of, 218
lateral pharyngeal walls, 230–231
posterior pharyngeal wall, 228–230
soft palate, 225–228
considerations for, 218–219
evaluation of, 220–225
functioning of, 218, 233
innervation of, 231–232
magnetic resonance imaging evaluation of, 222
nasal endoscopy evaluation of, 220–221, 221f, 231
perceptual evaluation of, 225
pressure-flow studies for evaluation of, 222–225
videofluoroscopy evaluation of, 220
Velopharyngeal orifice size, 223
Vertical dimension of occlusion, 45, 137, 180, 217, 337, 339, 347
Vestibuloplasty, 102–103
Videofluoroscopy, 220
Vinca alkaloids, 426, 427t
Virtual reality, 369–372, 371f
Vitamin A, 72
Voiceless consonants, 217, 217t
Volume effect, 20
von Langenbeck technique, 323
Vowels, 216–217
Vulcanization, 263–264

W
Waldeyer ring, 156
Wax pattern, 367, 368f
Weber-Fergusson incision, 160, 160f, 169

X
Xerostomia
chemotherapy-induced, 432
radiation-induced, 33–34
X-rays, 2

Z
Zurich approach, 323–324
Zygoma implants, 184, 185f, 341, 341f