On Continuing Synergies in Surgery • Prosthodontics • Biomaterials

Edited by

George A. Zarb, BChD, DDS, MS, MS, FRCD(C)

Tomas Albrektsson, MD, PhD, ODhc

Gerald Baker, DDS, MS, FRCD(C)

Steven E. Eckert, DDS, MS

Clark Stanford, DDS, PhD

Dennis P. Tarnow, DDS

Ann Wennerberg, DDS, PhD
Table of Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Looking Back: The Emergence and the Promise of Osseointegration</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>George A. Zarb</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Treatment Outcomes</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>George A. Zarb, Tomas Albrektsson</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Local and Systemic Health Considerations</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>S. Ross Bryant, Sreenivas Koka, Ian R. Matthew</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Healing Response</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Tomas Albrektsson, Victoria Franke-Stenport, Ann Wennerberg</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Materials, Designs, and Surfaces</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>Ann Wennerberg, Tomas Albrektsson, Clark Stanford</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Diagnostic Imaging</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Michael J. Pharoah, Ernest W. N. Lam</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Surgical Considerations</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Gerald Baker, David J. Psutka, Lesley David</td>
<td></td>
</tr>
</tbody>
</table>
Soft Tissue Esthetic Considerations 97
Dennis P. Tarnow, Sang-Choon Cho, George A. Zarb

Prosthodontic Considerations 107
George A. Zarb, Steven E. Eckert, Clark Stanford

Early-Loading Protocols 145
Nikolai Attard, George A. Zarb

Osseointegration Failure 157
David Chvartszaid, Sreenivas Koka, George A. Zarb

Standards of Care 165
Kirk Preston

Future Directions 171
Clark Stanford

From Rearview Vistas to Current Landscapes 175
George A. Zarb

Appendix: Internet Resources 181
Christine White

Index 185
Per-Ingvar Brånemark introduced the concept of osseointegrated dental implants and raised the bar for management of dental and orofacial deficits. As a result, long-term clinical outcomes from the technique’s scrupulously applied surgical and prosthodontic protocols ushered in a new and exciting dental treatment era, particularly for partially and completely edentulous patients.

The method’s ensuing clinical virtuosity evolved from rigorous scientific documentation and critical appreciation of two very compelling considerations: first, the realization that a particular metal, commercially pure titanium, designed in different macroscopic and microscopic forms, offers the potential to become strongly rooted in bone under controlled conditions; and second, the development of specified surgical tissue management and prosthodontic loading protocols to induce and maintain the desired interfacial osteogenesis.

Subsequent routine dental use of osseointegration resulted from a long research voyage in a vessel made seaworthy by the synergistic efforts of numerous clinical scientists. The scholarly journey was a long and fruitful one since its Gothenburg inception and subsequent launch via the Toronto Conference of 1982. A number of this book’s writers were crew members on that first journey, while others joined at a later time. Together we have weathered both fair and heavy conditions as we tended to—and sometimes even replaced—the vessel’s planks while staying afloat.

The clinical journey continues to be an exciting one, and this monograph seeks to be a log of the important ports visited and revisited. We hope that a synthesis of these fascinating venues provides a useful guide for those readers who plan their treatment voyages to similar destinations.
Tomas Albrektsson, MD, PhD, ODHc
Professor and Head
Department of Biomaterials
University of Gothenburg
Gothenburg, Sweden

Nikola Attard, BChD, MSc, PhD
Lecturer
Department of Restorative Dentistry
Faculty of Dental Surgery
University of Malta
Msida, Malta

Gerald Baker, DDS, MS, FRCD(C)
Head
Division of Oral and Maxillofacial Surgery
Department of Dentistry
Mount Sinai Hospital
Toronto, Ontario, Canada
Assistant Professor
Oral and Maxillofacial Surgery and
Implant Prosthodontic Unit
Faculty of Dentistry
University of Toronto
Toronto, Ontario, Canada

S. Ross Bryant, DDS, MSc, PhD, FRCD(C)
Assistant Professor
Division of Prosthodontics and Dental Geriatrics
Department of Oral Health Sciences
Faculty of Dentistry
University of British Columbia
Vancouver, British Columbia, Canada

David Chvartszaid, DDS, MSc
Prosthodontist
Resident
Department of Periodontology
Faculty of Dentistry
University of Toronto
Toronto, Ontario, Canada

Sang-Choon Cho, DDS
Associate Director of Clinical Research
Assistant Clinical Professor
Department of Periodontology and Implant Dentistry
College of Dentistry
New York University
New York, New York

Lesley David, DDS, FRCD(C)
Staff Surgeon
Division of Oral and Maxillofacial Surgery
Department of Dentistry
Mount Sinai Hospital
Toronto, Ontario, Canada
Associate in Dentistry
Implant Prosthodontic Unit
Faculty of Dentistry
University of Toronto
Toronto, Ontario, Canada

Steven E. Eckert, DDS, MS
Professor
Division of Prosthodontics
Department of Dental Specialties
Mayo Medical School
Rochester, Minnesota

Victoria Franke-Stenport, DDS, PhD
Assistant Professor
Department of Biomaterials
Department of Prosthodontics
University of Gothenburg
Gothenburg, Sweden

Sreenivas Koka, DDS, MS, PhD
Professor and Chair
Division of Prosthodontics
Department of Dental Specialties
Mayo Medical School
Rochester, Minnesota
Ernest W. N. Lam, DMD, PhD, FRCD(C)
Associate Professor
Department of Oral Radiology
Faculty of Dentistry
University of Toronto
Toronto, Ontario, Canada

Ian R. Matthew, BDS, MDentSc, PhD, FDSRCS (Eng/Edin)
Assistant Professor and Chair
Division of Oral and Maxillofacial Surgery
Department of Oral Biological and Medical Sciences
Faculty of Dentistry
University of British Columbia
Vancouver, British Columbia, Canada

Michael J. Pharoah, DDS, MSc, Dip Oral Rad, FRCD(C)
Professor and Head
Department of Oral Radiology
Faculty of Dentistry
University of Toronto
Toronto, Ontario, Canada

Kirk Preston, BSc, BEd, MEd, DDS, MSc
Prosthodontist
University of Toronto
Toronto, Ontario, Canada
Prosthodontist
Dalhousie University
Halifax, Nova Scotia, Canada

David J. Psutka, DDS, FRCD(C)
Staff Surgeon
Division of Oral and Maxillofacial Surgery
Department of Dentistry
Mount Sinai Hospital
Toronto, Ontario, Canada
Associate in Dentistry
Oral and Maxillofacial Surgery and Implant Prosthodontic Unit
Faculty of Dentistry
University of Toronto
Toronto, Ontario, Canada

Clark Stanford, DDS, PhD
Associate Dean for Research
Centennial Fund Professor
College of Dentistry
University of Iowa
Iowa City, Iowa

Dennis P. Tarnow, DDS
Professor and Chair
Department of Periodontology and Implant Dentistry
College of Dentistry
New York University
New York, New York

Ann Wennerberg, DDS, PhD
Professor
Department of Biomaterials
University of Gothenburg
Gothenburg, Sweden
Professor
Department of Prosthodontics
University of Malmo
Malmo, Sweden

Christine White, MA
Collegiate Librarian
College of Dentistry
University of Iowa
Iowa City, Iowa

George A. Zarb, BChD, DDS, MS, MS, FRCD(C)
Professor Emeritus
Department of Prosthodontics
Faculty of Dentistry
University of Toronto
Toronto, Ontario, Canada
The health and esthetic appearance of peri-implant soft tissues are mutually dependent. Favorable long-term outcomes of both are influenced by the required synergy of several factors, namely a better understanding of wound-healing predictability, newer biomaterials, and refinement of surgical techniques. The routine clinical objective is to replicate and maintain normative esthetic parameters that reflect optimal tissue health and morphology around natural teeth. This objective is particularly relevant in the anterior or esthetic zone of the mouth and should be reconciled with each patient’s circumoral activity (Fig 8-1).

This chapter discusses treatment protocols that are most likely to yield efficacious and effective long-term outcomes in the management of peri-implant morphologic tissue compromise. The ultimate objectives are an esthetically acceptable result and predictable achievement of two key determinants in treatment planning: the host bone site with its overlying soft tissue and its relationship to the interdental papilla.

Management of the Host Bone Site

Surgical implant placement must be guided by the overall esthetic requirements of the definitive restoration. This strategy demands a routine three-dimensional analysis of the proposed implant site that reconciles these features in the context of an individual’s circumoral activity:

- Clinical assessment and diagnostic cast analysis to provide information on mesiodistal, faciolingual, and apicocoronal dimensions
- Imaging evaluation (see chapter 6)

All too frequently, the cause of the dental absence—congenital condition, trauma, periodontal disease, failed endodontic treatment—results in different degrees of time-dependent morphologic distortion and reduction of the planned host site for the implant (Fig 8-2). Consequently, the site often needs improvement to ensure both predictable osseous support for the implant and esthetic soft tissue surroundings.

Mesiodistal dimensions

The width of the space may have an impact on the surgical management decision. A narrow space (usually one missing tooth) is unlikely to be accompanied by a challenging reduction in vertical bone height unless the tooth was lost because of a traumatic incident with accompanying avulsion of bone or an advanced localized infective process. This stability occurs because the proximity of two healthy periodontal ligament areas adjacent to the edentulous space appears to preclude much of a ridge reduction process. The challenge in such cases is far more likely to be in the faciolingual dimension, and a narrow implant, which will have somewhat reduced optimal physical properties, usually meets the challenge in patients with a low smile line (Fig 8-3a). Otherwise, buccal grafting will be needed either before or during implant placement. The resultant interproximal papilla tends to readily assume normal proportions (Fig 8-3b).

A wide space (two or more missing teeth), on the other hand, is frequently accompanied by a time-dependent and variable vertical reduction in residual ridge height. Irrespective of the number of implants placed to support a planned fixed prosthesis, bony support for the interproximal papillae is frequently insufficient. In these situations, a mix of gingival and bony surgical strategies have to be applied to provide respect-
able esthetic results. Alternatively, a single implant and an adjacent pontic (Fig 8-4) may be the answer rather than two adjacent implants, except when two central incisors are missing.

Faciolingual dimensions

Without question, the worst place to position an implant is too far facially. The implant should not be angled anywhere toward the labial surface. Whenever this happens, there will be great difficulty in keeping the labial tissue from migrating coronally when the new restoration is placed. The ideal placement is either at the incisal edge, if the definitive restoration will be cement retained, or slightly lingual to that (toward the cingulum area) for screw-retained restorations (Fig 8-5). If a screw-retained crown is used and the implant is placed more palatally, then the facial eminence can be created by using the crown to contour the crevice and support the buccal free gingiva.
Ideally, the implant should be placed 3.0 mm apical to the gingival margins of the proximal teeth to facilitate esthetic integration (Fig 8-6). This positioning will allow adequate space for a smooth emergence profile of the crown. If the implant placement is too shallow, and particularly if the implant is placed toward the palate, there will not be enough room to make a smooth transition in the contour of the restoration. Wherever possible, ridge lap restorations should be avoided. This design may lead to soft tissue management problems for the patient and, without impeccable home care, to unsatisfactory long-term outcomes.

A residual ridge area with a minimal deformity that possesses a sufficient quantity of bone to allow proper implant positioning can be corrected either prior to or at the time of stage 1 surgery with a connective tissue graft. Soft tissue management at stage 2 surgery will aid in creating the appropriate tissue shape or volume in interimplant and intertooth situations. Repositioning of the tissue may be necessary to create...