Applications of Orthodontic Mini-Implants

Jong Suk Lee, DDS, MS, PhD
Jung Kook Kim, DDS, MS, PhD
Young-Chel Park, DDS, MS, PhD
Robert L. Vanarsdall, Jr, DDS
Preface vii
Acknowledgments viii

1 Evolution of the Orthodontic Mini-Implant 1
 Historical Background
 Osseointegration and Dental Implants
 Complications

2 Fundamentals of Skeletal Anchorage 13
 Terminology and Basic Concepts
 Biologic Aspects of Orthodontic Implantation

3 Design and Function of New, Screw-Type Orthodontic Mini-Implants 29
 Stability of Orthodontic Mini-Implants
 Design of a New Screw-Type Mini-Implant
 Clinical and Laboratory Trials of the New Mini-Implants

4 Treatment Planning 51
 Sequence of Treatment
 Selection of the Insertion Site
 Selection of the Orthodontic Mini-Implant
 Determination of Insertion Depth
 Precautions in the Maxilla
 Precautions in the Mandible

5 Surgical Procedures 87
 Surgical Principles
 Surgical Procedures
 Problems and Solutions
Mechanics and Limitations 111

Mechanics of the New Type of Anchorage
Limitations of Treatment
Classification of Mechanics
Selection of Mechanics
Significance of Treatment with Orthodontic Implants
Case Reports

Treatment Based on a New Paradigm 147

E.H. Angle Paradigm Versus Soft Tissue Treatment Paradigm
Mechanics-Centered Treatment Versus Objective-Centered Treatment
New Treatment Paradigm Based on the Orthodontic Implant Type of Anchorage
Molar Intrusion with Fixed Mechanotherapy
Leveling with Orthodontic Implants
Case Reports

Anterior-Posterior Control 179

Anterior Retraction
Posterior Distalization
Molar Protraction
Molar Axis Control

Vertical Control 217

Anterior Intrusion
Anterior Extrusion
Posterior Intrusion
Posterior Extrusion

Transverse Control 247

Maxillary Orthopedic Expansion
Asymmetric Transverse Control

Preprosthodontic Orthodontic Treatment or Adjunctive Tooth Movement 255

Preprosthodontic Orthodontic Treatment
Adjunctive Treatment

Index 269
When Dr Edward Angle developed the edgewise bracket for three-dimensional control of teeth, he set the stage for those who followed to design techniques that allowed for more efficient treatment and better outcomes. Their common objective was to minimize unwanted tooth movements and at the same time promote control of practical three-dimensional tooth movements. Development of the simple, stable, and easy-to-use orthodontic mini-implant represents a critical turning point in the search for effortless control of orthodontic anchorage.

The effectiveness of orthodontic mini-implants does not diminish concerns about loss of anchorage, nor does it solve the problem of loss of anchorage. The orthodontic mini-implant does, however, provide rigid anchorage that makes treatment more efficient, and it also makes biologically permissible movements possible as well. In particular, intrusion of the molars is now practical, in turn allowing vertical disharmony to be corrected with predictability and control.

Of course, many problems remain unresolved. Given the relatively short (10-year) history of the use of mini-implants in orthodontic treatment, long-term data is necessarily limited. More research is needed, particularly with regard to orthopedic applications. Today we find ourselves at the clinical stage of development, which calls for further systematic and prospective research.

This textbook is based on the clinical data we have collected thus far. It describes precise conditions and techniques for clinical application of orthodontic mini-implants and serves as a foundation upon which future treatment using mini-implants can be supported. Despite the need for additional basic and clinical research, we offer this book as an introduction to the new treatment concept of mini-implant orthodontics for those orthodontists and students who have been searching for better treatment results.

This textbook provides an alternative to surgical orthodontics in selected cases. Because the success of this treatment modality depends on new treatment principles and a more precise diagnosis, treatment on the basis of biologic principles is imperative. Can this tiny implant complete the evolutionary advances in mechanotherapy of the past 100 years, transform the treatment paradigm, extend the scope of nonsurgical therapy, and usher in a new era in orthodontic treatment? We believe so, and we think you will too after reading this book.
Special considerations and monitoring

Arch form
In cases of molar protraction, mesial rotation occurs, the arch form is skewed, and the buccal overjet is increased in the second molar area. The arch form may skew readily as distal rotation of the molar occurs.

Occlusal plane canting
Even a very light force may cause adverse side effects if treatment is prolonged. If the treatment period is long, particularly for unilateral protraction of the molar, occlusal plane canting may readily occur even under the influence of slight forces.
Periodontal considerations
Because gingival remodeling is much slower than alveolar remodeling, space closure is usually accompanied by problems of soft tissue bunching or excess. Treatment of problems related to gingival excess after space closure and additional surgical excisions might be needed.

Moreover, as gingival tissue is folded, accessibility is decreased and oral hygiene control becomes difficult. Close monitoring should be continuous throughout the treatment, particularly at the mesial side of protracted molars.

Molar axis control

Treatment planning and biomechanics

Broadly speaking, molar axis control can be classified into three types according to the treatment objective (Fig 8-89). The force system for each type, the required period of treatment time, and the degree of difficulty differ accordingly (Fig 8-90).
Because the patient did not cooperate in the use of maxillomandibular elastics, the anterior teeth were excessively intruded. As a result, the anterior vertical relationship and the smile line worsened.

The anterior vertical relationship was improved by intrusion of the posterior and anterior teeth.

The best way to prevent anterior teeth from being excessively intruded is to refrain from bonding brackets to anterior teeth until the molars are intruded up to the position of the treatment objective. Bond brackets to anterior teeth only when the entire dentition must be intruded.

Intrusion occurs more easily in premolar areas than in molar areas because of the difference in the size of the root and the line of action, which is related to the position of the implant. Creation of a second-order bend or step bend may be useful for these situations.
POSTERIOR EXTRUSION

Posterior extrusion can be classified into two types: posterior extrusion accompanied by an increase in facial vertical dimension, and posterior extrusion with unchanged facial vertical dimension. Extrusion that accompanies stretching of the overall soft tissue may result in relapse, as noted previously.\(^\text{13}\)

Treatment planning

For posterior extrusion in conjunction with an increase in facial vertical dimension, disocclusion of the posterior teeth should be performed first. The problem of increasing the vertical dimension in a nongrowing patient is generally not a biomechanical issue but a physiologic one (Fig 9-66). That is, the evaluation of physiologic vertical dimension or freeway space must precede treatment.

There is no established protocol for diagnosis and treatment planning to increase the facial vertical dimension,\(^\text{29,30}\) and the stability of increased facial vertical dimension is still controversial. Maintenance of an increased facial vertical dimension may be more difficult than the process of increasing the alveolar vertical dimension.

Biomechanics and mechanics

With implants, in contrast to conventional mechanics, extrusion is more difficult than intrusion because of the characteristics of implant mechanics. As in intrusion, in extrusion the molar must be controlled three-dimensionally.

Implants exhibit weak push mechanics (Fig 9-67). In addition, three-dimensional control should be maintained. That is, buccal extrusive force is not enough to accomplish extrusion, and buccal and lingual extrusive forces together are necessary for better torque control (Fig 9-68).