Table of Contents

- **List of Algorithms** vi
- **Preface** vii
- **Contributors** ix

I Dentoalveolar Problems 1

II Implant Therapy 15

III Dentofacial Deformities 29

IV Trauma 45

V Reconstructive Surgery 91

VI Cysts 101

VII Tumors and Other Lesions 109

VIII Cleft Lip and Palate 135

IX TMDs and Orofacial Pain 153

X Maxillary Sinus Pathology 185

XI Salivary Gland Pathology 197

XII Bone Infection and Necrosis 215

XIII Sleep Disorders 231

XIV General Considerations 237

Index 261
Arriving at the appropriate diagnosis or treatment of any condition must involve a logical thought process. An algorithm is a graphic representation of how this process should proceed. Learning to use the algorithms presented in this text not only leads to proper patient management but also helps to develop a thought process that can be applied to other diagnostic and therapeutic decisions.

It is not logistically possible to present an algorithm for every condition that might be encountered in the practice of oral and maxillofacial surgery. Therefore, the topics selected represent the more common situations that a clinician may face. It is also not possible in this type of book to present all of the detailed information that may be needed to carry out the actual treatment for the patient. Thus, in some instances it will be necessary to consult other sources for such specifics. While selected references are provided in the text, they are not meant to be all-inclusive.

When reviewing the algorithms in this book, readers will sometimes find information that differs from the approaches with which they are familiar. It is a clinical reality that there may be several different ways in which certain conditions can be successfully treated. However, the algorithms in this book have been developed by recognized experts to assure the reliability of the recommended approaches.

All of the topics for which algorithms are presented fall within the scope of oral and maxillofacial surgery; many, however, are conditions that also are treated by general dentists. Moreover, most of the general and diagnostic algorithms have universal application. Therefore, this text should be of interest to clinicians other than oral and maxillofacial surgeons.

Even when a clinician is thoroughly familiar with the management of a particular problem and able to treat it successfully, there is a difference between knowing what to do and logically describing the diagnostic and therapeutic process. This was the challenge that we presented to the clinicians who were asked to contribute algorithms. We would like to thank them for accepting this challenge and for their excellent work in helping make this book possible.

Daniel M. Laskin
A. Omar Abubaker

Using This Book
This book is divided into 14 sections that together cover 100 topics in oral and maxillofacial surgery. Each topic consists of an algorithm and separate explanatory text. Readers should study the algorithm first, using the arrows to follow the progression of the diagnosis and/or treatment. The numbered boxes correspond to numbered text passages located on a separate page (usually opposite), where additional information is provided. The blue boxes in the algorithm contain diagnostic information, green boxes contain treatment information. Cross references in the text indicate where additional information can be found in other algorithms. Readers should use the index at the back of the book to locate specific topics of interest.
Contributors

David L. Hirsch, DDS, MD
Assistant Professor
Department of Surgery
New York University School of Medicine
Department of Oral and Maxillofacial Surgery
New York University College of Dentistry
New York, New York

John-Wallace Hudson, DDS
Professor
Department of Oral and Maxillofacial Surgery
University of Tennessee Medical Center
Knoxville, Tennessee

Thomas A. Indresano, DMD
Professor and Chairman
Department of Oral and Maxillofacial Surgery
Arthur A. Dugoni School of Dentistry
The University of the Pacific
San Francisco, California

Ole T. Jensen, DDS, MS
Private Practice
Oral and Maxillofacial Surgery
Greenwood Village, Colorado

Leonard B. Kaban, DMD, MD
Professor and Chairman
Department of Oral and Maxillofacial Surgery
Harvard School of Dental Medicine
Boston, Massachusetts

Michael A. Kail, DMD
Clinical Assistant Professor
Department of Oral and Maxillofacial Surgery
School of Dental Medicine
University of Pittsburgh
Pittsburgh, Pennsylvania

Daniel M. Laskin, DDS, MS
Professor and Chairman Emeritus
Department of Oral and Maxillofacial Surgery
Schools of Dentistry and Medicine
Virginia Commonwealth University
Richmond, Virginia

Stewart K. Lazow, MD, DDS
Professor and Vice Chairman
Oral and Maxillofacial Surgery Residency Director
Department of Dental and Oral and Maxillofacial Surgery
Kings County Hospital
State University of New York
Brooklyn, New York

Robert D. Marciani, DMD
Professor of Surgery
Chief, Division of Oral and Maxillofacial Surgery
Department of Surgery
University of Cincinnati
Cincinnati, Ohio

Brett A. Miles, DDS, MD
Former Resident in Oral and Maxillofacial Surgery
Current Resident
Department of Otolaryngology—Head and Neck Surgery
University of Texas Southwestern Medical Center
Dallas, Texas

Craig M. Misch, DDS, MDS
Private Practice
Oral and Maxillofacial Surgery
Sarasota, Florida

Robert W. T. Myall, BDS, MD
Professor
Department of Oral and Maxillofacial Surgery
School of Dentistry
Oregon Health and Science University
Portland, Oregon

Oded Nahlieli, DMD
Professor and Chairman
Department of Oral and Maxillofacial Surgery
Barzilai Medical Center
Ashkelon, Israel

Gregory M. Ness, DDS
Professor
Department of Oral and Maxillofacial Surgery
Schools of Dentistry and Medicine
Virginia Commonwealth University
Richmond, Virginia

Robert A. Ord, DDS, MD, MS
Professor and Chairman
Department of Oral and Maxillofacial Surgery
Greenebaum Cancer Center
University of Maryland Medical Center
Baltimore, Maryland
Contributors

Micha Peled, DMD, MD
Head
Department of Oral and Maxillofacial Surgery
Technion Faculty of Medicine
Rambam Medical Center
Haifa, Israel

M. Anthony Pogrel, DDS, MD
Professor and Chairman
Department of Oral and Maxillofacial Surgery
University of California, San Francisco
San Francisco, California

Salvatore L. Ruggiero, DMD, MD
Chief of Oral and Maxillofacial Surgery
Department of Dental Medicine
Long Island Jewish Medical Center
New Hyde Park, New York

James J. Sciubba, DMD, PhD
Professor (Retired)
Department of Otolaryngology—Head and Neck Surgery
Johns Hopkins School of Medicine

Consultant
Milton J. Dance, Jr Head and Neck Rehabilitation Treatment Center
Greater Baltimore Medical Center
Baltimore, Maryland

Robert A. Strauss, DDS, MD
Professor and Residency Program Director
Department of Oral and Maxillofacial Surgery
Schools of Dentistry and Medicine
Virginia Commonwealth University
Richmond, Virginia

Andrew B. G. Tay, BDS, MDS
Consultant
Department of Oral and Maxillofacial Surgery
National Dental Centre
Singapore

Maria J. Troulis, DDS, MSc
Associate Professor and Director of Residency Training
Department of Oral and Maxillofacial Surgery
Massachusetts General Hospital
Harvard School of Dental Medicine
Boston, Massachusetts

Thomas C. Waldrop, DDS, MS
Professor and Director of Graduate Periodontics
Department of Periodontics
School of Dentistry
Virginia Commonwealth University
Richmond, Virginia

John R. Werther, DMD, MD
Private Practice
Oral and Maxillofacial Surgery
Nashville, Tennessee

Vincent B. Ziccardi, DDS, MD
Associate Professor and Chairman
Residency Program Director
Department of Oral and Maxillofacial Surgery
University of Medicine and Dentistry of New Jersey
Newark, New Jersey

John R. Zuniga, DMD, MS, PhD
Robert V. Walker DDS Chair in Oral and Maxillofacial Surgery
Professor and Chairman
Division of Oral and Maxillofacial Surgery
Department of Surgery
University of Texas Southwestern Medical Center
Dallas, Texas

Barry E. Zweig, DDS
Professor
Department of Oral and Maxillofacial Surgery
University of Medicine and Dentistry of New Jersey
Newark, New Jersey
Implant Therapy

7 Alveolar Ridge Deficiency 16
 Ole T. Jensen

8 Anterior Tooth Replacement 18
 Craig M. Misch

9 Premolar Replacement 21
 Craig M. Misch

10 Molar Replacement 23
 Craig M. Misch

11 Peri-implant Diseases 25
 Thomas C. Waldrop
Premolar Replacement

1. History and Physical Findings
 - Failed endodontic therapy
 - Periodontitis
 - Lip line and tooth exposure
 - Gingival biotype
 - Periodontal pocket depths
 - Parulis/sinus tract
 - Anterior guidance
 - Bone level on adjacent teeth
 - Bone apical to socket
 - Periapical pathology

2. Diagnostic Procedures
 - Periapical radiograph
 - Panoramic radiograph
 - Esthetic evaluation
 - Periodontal probing
 - Occlusal examination
 - Study casts

3. Extraction and socket evaluation

4. Immediate implant placement
 - Intact socket
 - Adequate primary stability

5. Healing abutment or provisional crown
 - Adequate primary stability
 - 2 to 4 months

6. Cover screw placement
 - Inadequate primary stability
 - 2 to 4 months

7. Implant uncovering
 - 1 to 2 months
 - Definitive implant crown

8. Socket bone graft
 - 4 months
 - Inadequate primary stability

9. Immediate dental implant with cover screw placement and bone repair
 - 2 to 4 months
 - Definitive implant crown

Text begins on page 22.
Management of a foreign body in the maxillary sinus often represents a significant surgical challenge because of the wide variety of objects that may be present in the antrum. Some clinical situations are clearcut, such as those following a recent complicated dental extraction, implant surgery, or traumatic injury to the maxillary sinus. However, the majority of foreign bodies may be asymptomatic and not discovered until considerable time has elapsed since the inciting event. Symptomatic patients with a foreign body located in the maxillary sinus may exhibit a clinical picture consistent with maxillary sinusitis. Signs and symptoms include nasal congestion, rhinorrhea, purulent nasal discharge, fever, facial pressure and/or pain overlying the maxillary sinus, headaches, and dental pain (see algorithm 72).

When the history or clinical presentation suggests a maxillary sinus foreign body, radiographic evaluation is essential for accurate identification and localization. Foreign body migration occurs due to mechanical forces or mucociliary function, and therefore radiographic localization is crucial, especially if significant time has elapsed since the foreign body was introduced or if the available radiographs are not current. A panoramic radiograph in combination with a lateral cephalograph often reveals the identity and location of the foreign body in the sinus. However, the majority of foreign bodies may be asymptomatic and not discovered until considerable time has elapsed since the inciting event. Symptomatic patients with a foreign body located in the maxillary sinus may exhibit a clinical picture consistent with maxillary sinusitis. Signs and symptoms include nasal congestion, rhinorrhea, purulent nasal discharge, fever, facial pressure and/or pain overlying the maxillary sinus, headaches, and dental pain (see algorithm 72).

The most common foreign body in the maxillary sinus is a displaced root or root fragment following extraction of a maxillary molar. Maxillary molars that have complicated root structures and are associated with a well-pneumatized maxillary sinus increase the risk of this complication. Even when meticulous dentoalveolar surgical techniques that avoid apical pressure are used when removing fractured roots, displacement can still occur. Appropriate imaging should be obtained to locate and identify the size of the root fragment.

Root fragments less than 3 mm in size may be observed within a sinus free of infection; the removal of such fragments may increase the potential for sinus complications. If the root fragment is very small, an attempt to irrigate the maxillary sinus and retrieve the root tip with suction through the oroantral communication is recommended. Attempts at vigorous instrumentation or surgical enlargement of the communication are fraught with problems and should be avoided. Antibiotic therapy, generally clindamycin, a fluoroquinolone, a macrolide, or amoxicillin and clavulanate, should be administered and the area allowed to heal. Generally, with small root fragments, uneventful healing will occur.

Root fragments greater than 3 mm in size or those associated with an infected sinus or persistent oroantral fistula require surgical removal. Antibiotic therapy should be initiated in cases associated with sinusitis or oroantral fistulae. The surgical approach selected for removal of maxillary sinus foreign bodies, including displaced root fragments, depends on the experience of the surgeon and the location and size of the foreign body. Traditionally, variations of the Caldwell-Luc approach via the canine fossa are most often used to access the antrum. This technique remains the approach of choice for large or complicated foreign bodies due to the optimal access and minimal morbidity of the procedure. Lateral approaches, similar to those used in maxillary sinus augmentation, may be more useful for procedures requiring removal of posterolaterally located implants and grafting materials. Recently, endoscopic techniques via a canine fossa or a middle meatal antrostomy have been successfully used to remove maxillary sinus foreign bodies. These approaches offer minimally invasive options for smaller or more medially located foreign bodies within the antrum or for those displaced into the middle meatus, nasal cavity, or ethmoid air cells. When an oroantral fistula is present, it can be treated at the time the foreign body is removed (see algorithm 74).

Dental implants are increasingly reported as a common foreign body in the maxillary sinus. Patients of advanced age with extensively pneumatized maxillary sinuses are being rehabilitated with dental implants in the molar region; one complication associated with this clinical situation can be the migration of a dental implant into the maxillary antrum. Dental implants that have migrated into the maxillary sinus should be removed with an appropriate technique as described in number 5. Significant migration of dental implants has been reported, and adequate preoperative imaging is paramount for appropriate management. The Caldwell-Luc approach remains an excellent choice for this problem. However, if significant implant migration has occurred, endoscopic assistance should be considered.

Endodontic treatment has been reported as a frequent cause of maxillary sinus foreign bodies. Foreign material ranging from canal-obturating materials (eg, silver points, gutta-percha, endodontic sealant, and files) to rotary instruments used in endodontic preparation may be displaced into the maxillary sinus during endodontic therapy.
Foreign Body in Maxillary Sinus

History and Physical Findings
- Traumatic and/or penetrating injury
- Dental extraction
- Dental implant surgery
- Endodontic therapy
- Nasal congestion
- Rhinorrhea
- Recurrent maxillary sinusitis
- Facial pain

Diagnostic Procedures
- Panoramic radiograph
- Lateral cephalogram
- CT scan

1. History and Physical Findings

2. Diagnostic Procedures

3. Tooth or root fragment
- Normal sinus
 - Antibiotic therapy
 - Observation
 - Surgical removal
 - Antibiotic therapy

4. Traumatized sinus
- Sinusitis or oroantral fistula
 - Antibiotic therapy
 - Surgical removal

5. Antibiotic therapy
- Sinusitis or oroantral fistula
 - Antibiotic therapy
 - Surgical removal

6. Dental implant

7. Antibiotic therapy
- Sinusitis or oroantral fistula
 - Antibiotic therapy
 - Surgical removal

8. Endodontic material or instrument

9. Antibiotic therapy
- Sinusitis or oroantral fistula
 - Antibiotic therapy
 - Surgical removal

10. Dental materials
- Normal sinus
 - Antibiotic therapy
 - Observation
 - Surgical removal

11. Normal sinus
- Antibiotic therapy
 - Observation
 - Surgical removal

12. Dental materials
- Large amount in normal sinus or any amount in infected sinus
 - Antibiotic therapy
 - Surgical removal

13. Graft and implant materials
- Infected particulate materials
 - Antibiotic therapy
 - Sinus irrigation and/or surgery

14. Graft and implant materials
- Infected block materials

15. Traumatically introduced foreign body

16. Traumatically introduced foreign body

17. Antrolith